ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prubl Unicode version

Theorem prubl 7437
Description: A positive fraction not in a lower cut is an upper bound. (Contributed by Jim Kingdon, 29-Sep-2019.)
Assertion
Ref Expression
prubl  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  e.  Q. )  ->  ( -.  C  e.  L  ->  B  <Q  C )
)

Proof of Theorem prubl
StepHypRef Expression
1 eleq1 2233 . . . . . . 7  |-  ( B  =  C  ->  ( B  e.  L  <->  C  e.  L ) )
21biimpcd 158 . . . . . 6  |-  ( B  e.  L  ->  ( B  =  C  ->  C  e.  L ) )
32adantl 275 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( B  =  C  ->  C  e.  L ) )
4 prcdnql 7435 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) )
53, 4jaod 712 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  (
( B  =  C  \/  C  <Q  B )  ->  C  e.  L
) )
65con3d 626 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( -.  C  e.  L  ->  -.  ( B  =  C  \/  C  <Q  B ) ) )
76adantr 274 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  e.  Q. )  ->  ( -.  C  e.  L  ->  -.  ( B  =  C  \/  C  <Q  B ) ) )
8 elprnql 7432 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  B  e.  Q. )
9 nqtric 7350 . . 3  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
108, 9sylan 281 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  e.  Q. )  ->  ( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
117, 10sylibrd 168 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  e.  Q. )  ->  ( -.  C  e.  L  ->  B  <Q  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   <.cop 3584   class class class wbr 3987   Q.cnq 7231    <Q cltq 7236   P.cnp 7242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-oadd 6397  df-omul 6398  df-er 6510  df-ec 6512  df-qs 6516  df-ni 7255  df-mi 7257  df-lti 7258  df-enq 7298  df-nqqs 7299  df-ltnqqs 7304  df-inp 7417
This theorem is referenced by:  prltlu  7438
  Copyright terms: Public domain W3C validator