ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prubl Unicode version

Theorem prubl 7487
Description: A positive fraction not in a lower cut is an upper bound. (Contributed by Jim Kingdon, 29-Sep-2019.)
Assertion
Ref Expression
prubl  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  e.  Q. )  ->  ( -.  C  e.  L  ->  B  <Q  C )
)

Proof of Theorem prubl
StepHypRef Expression
1 eleq1 2240 . . . . . . 7  |-  ( B  =  C  ->  ( B  e.  L  <->  C  e.  L ) )
21biimpcd 159 . . . . . 6  |-  ( B  e.  L  ->  ( B  =  C  ->  C  e.  L ) )
32adantl 277 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( B  =  C  ->  C  e.  L ) )
4 prcdnql 7485 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) )
53, 4jaod 717 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  (
( B  =  C  \/  C  <Q  B )  ->  C  e.  L
) )
65con3d 631 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( -.  C  e.  L  ->  -.  ( B  =  C  \/  C  <Q  B ) ) )
76adantr 276 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  e.  Q. )  ->  ( -.  C  e.  L  ->  -.  ( B  =  C  \/  C  <Q  B ) ) )
8 elprnql 7482 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  B  e.  Q. )
9 nqtric 7400 . . 3  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
108, 9sylan 283 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  e.  Q. )  ->  ( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
117, 10sylibrd 169 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  e.  Q. )  ->  ( -.  C  e.  L  ->  B  <Q  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   <.cop 3597   class class class wbr 4005   Q.cnq 7281    <Q cltq 7286   P.cnp 7292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-mi 7307  df-lti 7308  df-enq 7348  df-nqqs 7349  df-ltnqqs 7354  df-inp 7467
This theorem is referenced by:  prltlu  7488
  Copyright terms: Public domain W3C validator