ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitsfval Unicode version

Theorem bitsfval 12439
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfval  |-  ( N  e.  ZZ  ->  (bits `  N )  =  {
m  e.  NN0  |  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) } )
Distinct variable group:    m, N

Proof of Theorem bitsfval
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 6017 . . . . 5  |-  ( n  =  N  ->  ( |_ `  ( n  / 
( 2 ^ m
) ) )  =  ( |_ `  ( N  /  ( 2 ^ m ) ) ) )
21breq2d 4094 . . . 4  |-  ( n  =  N  ->  (
2  ||  ( |_ `  ( n  /  (
2 ^ m ) ) )  <->  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
32notbid 671 . . 3  |-  ( n  =  N  ->  ( -.  2  ||  ( |_
`  ( n  / 
( 2 ^ m
) ) )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
43rabbidv 2788 . 2  |-  ( n  =  N  ->  { m  e.  NN0  |  -.  2  ||  ( |_ `  (
n  /  ( 2 ^ m ) ) ) }  =  {
m  e.  NN0  |  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) } )
5 df-bits 12438 . 2  |- bits  =  ( n  e.  ZZ  |->  { m  e.  NN0  |  -.  2  ||  ( |_
`  ( n  / 
( 2 ^ m
) ) ) } )
6 nn0ex 9363 . . 3  |-  NN0  e.  _V
76rabex 4227 . 2  |-  { m  e.  NN0  |  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) }  e.  _V
84, 5, 7fvmpt 5704 1  |-  ( N  e.  ZZ  ->  (bits `  N )  =  {
m  e.  NN0  |  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395    e. wcel 2200   {crab 2512   class class class wbr 4082   ` cfv 5314  (class class class)co 5994    / cdiv 8807   2c2 9149   NN0cn0 9357   ZZcz 9434   |_cfl 10475   ^cexp 10747    || cdvds 12284  bitscbits 12437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-i2m1 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-ov 5997  df-inn 9099  df-n0 9358  df-bits 12438
This theorem is referenced by:  bitsval  12440
  Copyright terms: Public domain W3C validator