ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffgt1 Unicode version

Theorem caucvgsrlemoffgt1 7947
Description: Lemma for caucvgsr 7950. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlembnd.bnd  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
caucvgsrlembnd.offset  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
Assertion
Ref Expression
caucvgsrlemoffgt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( G `  m ) )
Distinct variable groups:    A, a, m    F, a    ph, a, m
Allowed substitution hints:    ph( u, k, n, l)    A( u, k, n, l)    F( u, k, m, n, l)    G( u, k, m, n, a, l)

Proof of Theorem caucvgsrlemoffgt1
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsrlembnd.bnd . . . . . . 7  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
21r19.21bi 2596 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  A  <R  ( F `  m ) )
3 ltasrg 7918 . . . . . . . 8  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
f  <R  g  <->  ( h  +R  f )  <R  (
h  +R  g ) ) )
43adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  N. )  /\  (
f  e.  R.  /\  g  e.  R.  /\  h  e.  R. ) )  -> 
( f  <R  g  <->  ( h  +R  f ) 
<R  ( h  +R  g
) ) )
51caucvgsrlemasr 7938 . . . . . . . 8  |-  ( ph  ->  A  e.  R. )
65adantr 276 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  A  e. 
R. )
7 caucvgsr.f . . . . . . . 8  |-  ( ph  ->  F : N. --> R. )
87ffvelcdmda 5738 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  ( F `
 m )  e. 
R. )
9 1sr 7899 . . . . . . . 8  |-  1R  e.  R.
109a1i 9 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  1R  e.  R. )
11 addcomsrg 7903 . . . . . . . 8  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  =  ( g  +R  f ) )
1211adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  N. )  /\  (
f  e.  R.  /\  g  e.  R. )
)  ->  ( f  +R  g )  =  ( g  +R  f ) )
134, 6, 8, 10, 12caovord2d 6139 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  ( A 
<R  ( F `  m
)  <->  ( A  +R  1R )  <R  ( ( F `  m )  +R  1R ) ) )
142, 13mpbid 147 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( A  +R  1R )  <R 
( ( F `  m )  +R  1R ) )
15 caucvgsr.cau . . . . . 6  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
16 caucvgsrlembnd.offset . . . . . 6  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
177, 15, 1, 16caucvgsrlemoffval 7944 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( G `  m )  +R  A )  =  ( ( F `  m )  +R  1R ) )
1814, 17breqtrrd 4087 . . . 4  |-  ( (
ph  /\  m  e.  N. )  ->  ( A  +R  1R )  <R 
( ( G `  m )  +R  A
) )
197, 15, 1, 16caucvgsrlemofff 7945 . . . . . 6  |-  ( ph  ->  G : N. --> R. )
2019ffvelcdmda 5738 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( G `
 m )  e. 
R. )
21 addcomsrg 7903 . . . . 5  |-  ( ( ( G `  m
)  e.  R.  /\  A  e.  R. )  ->  ( ( G `  m )  +R  A
)  =  ( A  +R  ( G `  m ) ) )
2220, 6, 21syl2anc 411 . . . 4  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( G `  m )  +R  A )  =  ( A  +R  ( G `  m )
) )
2318, 22breqtrd 4085 . . 3  |-  ( (
ph  /\  m  e.  N. )  ->  ( A  +R  1R )  <R 
( A  +R  ( G `  m )
) )
24 ltasrg 7918 . . . 4  |-  ( ( 1R  e.  R.  /\  ( G `  m )  e.  R.  /\  A  e.  R. )  ->  ( 1R  <R  ( G `  m )  <->  ( A  +R  1R )  <R  ( A  +R  ( G `  m ) ) ) )
2510, 20, 6, 24syl3anc 1250 . . 3  |-  ( (
ph  /\  m  e.  N. )  ->  ( 1R 
<R  ( G `  m
)  <->  ( A  +R  1R )  <R  ( A  +R  ( G `  m ) ) ) )
2623, 25mpbird 167 . 2  |-  ( (
ph  /\  m  e.  N. )  ->  1R  <R  ( G `  m ) )
2726ralrimiva 2581 1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( G `  m ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   <.cop 3646   class class class wbr 4059    |-> cmpt 4121   -->wf 5286   ` cfv 5290  (class class class)co 5967   1oc1o 6518   [cec 6641   N.cnpi 7420    <N clti 7423    ~Q ceq 7427   *Qcrq 7432    <Q cltq 7433   1Pc1p 7440    +P. cpp 7441    ~R cer 7444   R.cnr 7445   1Rc1r 7447   -1Rcm1r 7448    +R cplr 7449    .R cmr 7450    <R cltr 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-iplp 7616  df-imp 7617  df-iltp 7618  df-enr 7874  df-nr 7875  df-plr 7876  df-mr 7877  df-ltr 7878  df-0r 7879  df-1r 7880  df-m1r 7881
This theorem is referenced by:  caucvgsrlemoffres  7948
  Copyright terms: Public domain W3C validator