ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffgt1 Unicode version

Theorem caucvgsrlemoffgt1 7866
Description: Lemma for caucvgsr 7869. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlembnd.bnd  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
caucvgsrlembnd.offset  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
Assertion
Ref Expression
caucvgsrlemoffgt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( G `  m ) )
Distinct variable groups:    A, a, m    F, a    ph, a, m
Allowed substitution hints:    ph( u, k, n, l)    A( u, k, n, l)    F( u, k, m, n, l)    G( u, k, m, n, a, l)

Proof of Theorem caucvgsrlemoffgt1
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsrlembnd.bnd . . . . . . 7  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
21r19.21bi 2585 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  A  <R  ( F `  m ) )
3 ltasrg 7837 . . . . . . . 8  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
f  <R  g  <->  ( h  +R  f )  <R  (
h  +R  g ) ) )
43adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  N. )  /\  (
f  e.  R.  /\  g  e.  R.  /\  h  e.  R. ) )  -> 
( f  <R  g  <->  ( h  +R  f ) 
<R  ( h  +R  g
) ) )
51caucvgsrlemasr 7857 . . . . . . . 8  |-  ( ph  ->  A  e.  R. )
65adantr 276 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  A  e. 
R. )
7 caucvgsr.f . . . . . . . 8  |-  ( ph  ->  F : N. --> R. )
87ffvelcdmda 5697 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  ( F `
 m )  e. 
R. )
9 1sr 7818 . . . . . . . 8  |-  1R  e.  R.
109a1i 9 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  1R  e.  R. )
11 addcomsrg 7822 . . . . . . . 8  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  =  ( g  +R  f ) )
1211adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  N. )  /\  (
f  e.  R.  /\  g  e.  R. )
)  ->  ( f  +R  g )  =  ( g  +R  f ) )
134, 6, 8, 10, 12caovord2d 6093 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  ( A 
<R  ( F `  m
)  <->  ( A  +R  1R )  <R  ( ( F `  m )  +R  1R ) ) )
142, 13mpbid 147 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( A  +R  1R )  <R 
( ( F `  m )  +R  1R ) )
15 caucvgsr.cau . . . . . 6  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
16 caucvgsrlembnd.offset . . . . . 6  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
177, 15, 1, 16caucvgsrlemoffval 7863 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( G `  m )  +R  A )  =  ( ( F `  m )  +R  1R ) )
1814, 17breqtrrd 4061 . . . 4  |-  ( (
ph  /\  m  e.  N. )  ->  ( A  +R  1R )  <R 
( ( G `  m )  +R  A
) )
197, 15, 1, 16caucvgsrlemofff 7864 . . . . . 6  |-  ( ph  ->  G : N. --> R. )
2019ffvelcdmda 5697 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( G `
 m )  e. 
R. )
21 addcomsrg 7822 . . . . 5  |-  ( ( ( G `  m
)  e.  R.  /\  A  e.  R. )  ->  ( ( G `  m )  +R  A
)  =  ( A  +R  ( G `  m ) ) )
2220, 6, 21syl2anc 411 . . . 4  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( G `  m )  +R  A )  =  ( A  +R  ( G `  m )
) )
2318, 22breqtrd 4059 . . 3  |-  ( (
ph  /\  m  e.  N. )  ->  ( A  +R  1R )  <R 
( A  +R  ( G `  m )
) )
24 ltasrg 7837 . . . 4  |-  ( ( 1R  e.  R.  /\  ( G `  m )  e.  R.  /\  A  e.  R. )  ->  ( 1R  <R  ( G `  m )  <->  ( A  +R  1R )  <R  ( A  +R  ( G `  m ) ) ) )
2510, 20, 6, 24syl3anc 1249 . . 3  |-  ( (
ph  /\  m  e.  N. )  ->  ( 1R 
<R  ( G `  m
)  <->  ( A  +R  1R )  <R  ( A  +R  ( G `  m ) ) ) )
2623, 25mpbird 167 . 2  |-  ( (
ph  /\  m  e.  N. )  ->  1R  <R  ( G `  m ) )
2726ralrimiva 2570 1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( G `  m ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   <.cop 3625   class class class wbr 4033    |-> cmpt 4094   -->wf 5254   ` cfv 5258  (class class class)co 5922   1oc1o 6467   [cec 6590   N.cnpi 7339    <N clti 7342    ~Q ceq 7346   *Qcrq 7351    <Q cltq 7352   1Pc1p 7359    +P. cpp 7360    ~R cer 7363   R.cnr 7364   1Rc1r 7366   -1Rcm1r 7367    +R cplr 7368    .R cmr 7369    <R cltr 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-iplp 7535  df-imp 7536  df-iltp 7537  df-enr 7793  df-nr 7794  df-plr 7795  df-mr 7796  df-ltr 7797  df-0r 7798  df-1r 7799  df-m1r 7800
This theorem is referenced by:  caucvgsrlemoffres  7867
  Copyright terms: Public domain W3C validator