ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffgt1 Unicode version

Theorem caucvgsrlemoffgt1 7702
Description: Lemma for caucvgsr 7705. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlembnd.bnd  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
caucvgsrlembnd.offset  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
Assertion
Ref Expression
caucvgsrlemoffgt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( G `  m ) )
Distinct variable groups:    A, a, m    F, a    ph, a, m
Allowed substitution hints:    ph( u, k, n, l)    A( u, k, n, l)    F( u, k, m, n, l)    G( u, k, m, n, a, l)

Proof of Theorem caucvgsrlemoffgt1
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsrlembnd.bnd . . . . . . 7  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
21r19.21bi 2545 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  A  <R  ( F `  m ) )
3 ltasrg 7673 . . . . . . . 8  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
f  <R  g  <->  ( h  +R  f )  <R  (
h  +R  g ) ) )
43adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  N. )  /\  (
f  e.  R.  /\  g  e.  R.  /\  h  e.  R. ) )  -> 
( f  <R  g  <->  ( h  +R  f ) 
<R  ( h  +R  g
) ) )
51caucvgsrlemasr 7693 . . . . . . . 8  |-  ( ph  ->  A  e.  R. )
65adantr 274 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  A  e. 
R. )
7 caucvgsr.f . . . . . . . 8  |-  ( ph  ->  F : N. --> R. )
87ffvelrnda 5599 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  ( F `
 m )  e. 
R. )
9 1sr 7654 . . . . . . . 8  |-  1R  e.  R.
109a1i 9 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  1R  e.  R. )
11 addcomsrg 7658 . . . . . . . 8  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  =  ( g  +R  f ) )
1211adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  N. )  /\  (
f  e.  R.  /\  g  e.  R. )
)  ->  ( f  +R  g )  =  ( g  +R  f ) )
134, 6, 8, 10, 12caovord2d 5984 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  ( A 
<R  ( F `  m
)  <->  ( A  +R  1R )  <R  ( ( F `  m )  +R  1R ) ) )
142, 13mpbid 146 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( A  +R  1R )  <R 
( ( F `  m )  +R  1R ) )
15 caucvgsr.cau . . . . . 6  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
16 caucvgsrlembnd.offset . . . . . 6  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
177, 15, 1, 16caucvgsrlemoffval 7699 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( G `  m )  +R  A )  =  ( ( F `  m )  +R  1R ) )
1814, 17breqtrrd 3992 . . . 4  |-  ( (
ph  /\  m  e.  N. )  ->  ( A  +R  1R )  <R 
( ( G `  m )  +R  A
) )
197, 15, 1, 16caucvgsrlemofff 7700 . . . . . 6  |-  ( ph  ->  G : N. --> R. )
2019ffvelrnda 5599 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( G `
 m )  e. 
R. )
21 addcomsrg 7658 . . . . 5  |-  ( ( ( G `  m
)  e.  R.  /\  A  e.  R. )  ->  ( ( G `  m )  +R  A
)  =  ( A  +R  ( G `  m ) ) )
2220, 6, 21syl2anc 409 . . . 4  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( G `  m )  +R  A )  =  ( A  +R  ( G `  m )
) )
2318, 22breqtrd 3990 . . 3  |-  ( (
ph  /\  m  e.  N. )  ->  ( A  +R  1R )  <R 
( A  +R  ( G `  m )
) )
24 ltasrg 7673 . . . 4  |-  ( ( 1R  e.  R.  /\  ( G `  m )  e.  R.  /\  A  e.  R. )  ->  ( 1R  <R  ( G `  m )  <->  ( A  +R  1R )  <R  ( A  +R  ( G `  m ) ) ) )
2510, 20, 6, 24syl3anc 1220 . . 3  |-  ( (
ph  /\  m  e.  N. )  ->  ( 1R 
<R  ( G `  m
)  <->  ( A  +R  1R )  <R  ( A  +R  ( G `  m ) ) ) )
2623, 25mpbird 166 . 2  |-  ( (
ph  /\  m  e.  N. )  ->  1R  <R  ( G `  m ) )
2726ralrimiva 2530 1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( G `  m ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   {cab 2143   A.wral 2435   <.cop 3563   class class class wbr 3965    |-> cmpt 4025   -->wf 5163   ` cfv 5167  (class class class)co 5818   1oc1o 6350   [cec 6471   N.cnpi 7175    <N clti 7178    ~Q ceq 7182   *Qcrq 7187    <Q cltq 7188   1Pc1p 7195    +P. cpp 7196    ~R cer 7199   R.cnr 7200   1Rc1r 7202   -1Rcm1r 7203    +R cplr 7204    .R cmr 7205    <R cltr 7206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4248  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-1o 6357  df-2o 6358  df-oadd 6361  df-omul 6362  df-er 6473  df-ec 6475  df-qs 6479  df-ni 7207  df-pli 7208  df-mi 7209  df-lti 7210  df-plpq 7247  df-mpq 7248  df-enq 7250  df-nqqs 7251  df-plqqs 7252  df-mqqs 7253  df-1nqqs 7254  df-rq 7255  df-ltnqqs 7256  df-enq0 7327  df-nq0 7328  df-0nq0 7329  df-plq0 7330  df-mq0 7331  df-inp 7369  df-i1p 7370  df-iplp 7371  df-imp 7372  df-iltp 7373  df-enr 7629  df-nr 7630  df-plr 7631  df-mr 7632  df-ltr 7633  df-0r 7634  df-1r 7635  df-m1r 7636
This theorem is referenced by:  caucvgsrlemoffres  7703
  Copyright terms: Public domain W3C validator