| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlemoffval | Unicode version | ||
| Description: Lemma for caucvgsr 7950. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f |
|
| caucvgsr.cau |
|
| caucvgsrlembnd.bnd |
|
| caucvgsrlembnd.offset |
|
| Ref | Expression |
|---|---|
| caucvgsrlemoffval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsrlembnd.offset |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | fveq2 5599 |
. . . . . . 7
| |
| 4 | 3 | oveq1d 5982 |
. . . . . 6
|
| 5 | 4 | oveq1d 5982 |
. . . . 5
|
| 6 | 5 | adantl 277 |
. . . 4
|
| 7 | simpr 110 |
. . . 4
| |
| 8 | caucvgsr.f |
. . . . . . 7
| |
| 9 | 8 | ffvelcdmda 5738 |
. . . . . 6
|
| 10 | 1sr 7899 |
. . . . . 6
| |
| 11 | addclsr 7901 |
. . . . . 6
| |
| 12 | 9, 10, 11 | sylancl 413 |
. . . . 5
|
| 13 | caucvgsrlembnd.bnd |
. . . . . . . 8
| |
| 14 | 13 | caucvgsrlemasr 7938 |
. . . . . . 7
|
| 15 | 14 | adantr 276 |
. . . . . 6
|
| 16 | m1r 7900 |
. . . . . 6
| |
| 17 | mulclsr 7902 |
. . . . . 6
| |
| 18 | 15, 16, 17 | sylancl 413 |
. . . . 5
|
| 19 | addclsr 7901 |
. . . . 5
| |
| 20 | 12, 18, 19 | syl2anc 411 |
. . . 4
|
| 21 | 2, 6, 7, 20 | fvmptd 5683 |
. . 3
|
| 22 | 21 | oveq1d 5982 |
. 2
|
| 23 | addasssrg 7904 |
. . 3
| |
| 24 | 12, 18, 15, 23 | syl3anc 1250 |
. 2
|
| 25 | addcomsrg 7903 |
. . . . . 6
| |
| 26 | 18, 15, 25 | syl2anc 411 |
. . . . 5
|
| 27 | pn0sr 7919 |
. . . . . 6
| |
| 28 | 15, 27 | syl 14 |
. . . . 5
|
| 29 | 26, 28 | eqtrd 2240 |
. . . 4
|
| 30 | 29 | oveq2d 5983 |
. . 3
|
| 31 | 0idsr 7915 |
. . . 4
| |
| 32 | 12, 31 | syl 14 |
. . 3
|
| 33 | 30, 32 | eqtrd 2240 |
. 2
|
| 34 | 22, 24, 33 | 3eqtrd 2244 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-i1p 7615 df-iplp 7616 df-imp 7617 df-enr 7874 df-nr 7875 df-plr 7876 df-mr 7877 df-ltr 7878 df-0r 7879 df-1r 7880 df-m1r 7881 |
| This theorem is referenced by: caucvgsrlemoffcau 7946 caucvgsrlemoffgt1 7947 caucvgsrlemoffres 7948 |
| Copyright terms: Public domain | W3C validator |