ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffval Unicode version

Theorem caucvgsrlemoffval 7535
Description: Lemma for caucvgsr 7541. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlembnd.bnd  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
caucvgsrlembnd.offset  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
Assertion
Ref Expression
caucvgsrlemoffval  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( G `  J )  +R  A )  =  ( ( F `  J )  +R  1R ) )
Distinct variable groups:    A, a    A, m    F, a    J, a    ph, a
Allowed substitution hints:    ph( u, k, m, n, l)    A( u, k, n, l)    F( u, k, m, n, l)    G( u, k, m, n, a, l)    J( u, k, m, n, l)

Proof of Theorem caucvgsrlemoffval
StepHypRef Expression
1 caucvgsrlembnd.offset . . . . 5  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
21a1i 9 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) ) )
3 fveq2 5375 . . . . . . 7  |-  ( a  =  J  ->  ( F `  a )  =  ( F `  J ) )
43oveq1d 5743 . . . . . 6  |-  ( a  =  J  ->  (
( F `  a
)  +R  1R )  =  ( ( F `
 J )  +R 
1R ) )
54oveq1d 5743 . . . . 5  |-  ( a  =  J  ->  (
( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) )  =  ( ( ( F `  J )  +R  1R )  +R  ( A  .R  -1R ) ) )
65adantl 273 . . . 4  |-  ( ( ( ph  /\  J  e.  N. )  /\  a  =  J )  ->  (
( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) )  =  ( ( ( F `  J )  +R  1R )  +R  ( A  .R  -1R ) ) )
7 simpr 109 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  J  e. 
N. )
8 caucvgsr.f . . . . . . 7  |-  ( ph  ->  F : N. --> R. )
98ffvelrnda 5509 . . . . . 6  |-  ( (
ph  /\  J  e.  N. )  ->  ( F `
 J )  e. 
R. )
10 1sr 7491 . . . . . 6  |-  1R  e.  R.
11 addclsr 7493 . . . . . 6  |-  ( ( ( F `  J
)  e.  R.  /\  1R  e.  R. )  -> 
( ( F `  J )  +R  1R )  e.  R. )
129, 10, 11sylancl 407 . . . . 5  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( F `  J )  +R  1R )  e. 
R. )
13 caucvgsrlembnd.bnd . . . . . . . 8  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
1413caucvgsrlemasr 7529 . . . . . . 7  |-  ( ph  ->  A  e.  R. )
1514adantr 272 . . . . . 6  |-  ( (
ph  /\  J  e.  N. )  ->  A  e. 
R. )
16 m1r 7492 . . . . . 6  |-  -1R  e.  R.
17 mulclsr 7494 . . . . . 6  |-  ( ( A  e.  R.  /\  -1R  e.  R. )  -> 
( A  .R  -1R )  e.  R. )
1815, 16, 17sylancl 407 . . . . 5  |-  ( (
ph  /\  J  e.  N. )  ->  ( A  .R  -1R )  e. 
R. )
19 addclsr 7493 . . . . 5  |-  ( ( ( ( F `  J )  +R  1R )  e.  R.  /\  ( A  .R  -1R )  e. 
R. )  ->  (
( ( F `  J )  +R  1R )  +R  ( A  .R  -1R ) )  e.  R. )
2012, 18, 19syl2anc 406 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( ( F `  J
)  +R  1R )  +R  ( A  .R  -1R ) )  e.  R. )
212, 6, 7, 20fvmptd 5456 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  ( G `
 J )  =  ( ( ( F `
 J )  +R 
1R )  +R  ( A  .R  -1R ) ) )
2221oveq1d 5743 . 2  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( G `  J )  +R  A )  =  ( ( ( ( F `  J )  +R  1R )  +R  ( A  .R  -1R ) )  +R  A
) )
23 addasssrg 7496 . . 3  |-  ( ( ( ( F `  J )  +R  1R )  e.  R.  /\  ( A  .R  -1R )  e. 
R.  /\  A  e.  R. )  ->  ( ( ( ( F `  J )  +R  1R )  +R  ( A  .R  -1R ) )  +R  A
)  =  ( ( ( F `  J
)  +R  1R )  +R  ( ( A  .R  -1R )  +R  A
) ) )
2412, 18, 15, 23syl3anc 1199 . 2  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( ( ( F `  J )  +R  1R )  +R  ( A  .R  -1R ) )  +R  A
)  =  ( ( ( F `  J
)  +R  1R )  +R  ( ( A  .R  -1R )  +R  A
) ) )
25 addcomsrg 7495 . . . . . 6  |-  ( ( ( A  .R  -1R )  e.  R.  /\  A  e.  R. )  ->  (
( A  .R  -1R )  +R  A )  =  ( A  +R  ( A  .R  -1R ) ) )
2618, 15, 25syl2anc 406 . . . . 5  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( A  .R  -1R )  +R  A )  =  ( A  +R  ( A  .R  -1R ) ) )
27 pn0sr 7511 . . . . . 6  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
2815, 27syl 14 . . . . 5  |-  ( (
ph  /\  J  e.  N. )  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
2926, 28eqtrd 2147 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( A  .R  -1R )  +R  A )  =  0R )
3029oveq2d 5744 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( ( F `  J
)  +R  1R )  +R  ( ( A  .R  -1R )  +R  A
) )  =  ( ( ( F `  J )  +R  1R )  +R  0R ) )
31 0idsr 7507 . . . 4  |-  ( ( ( F `  J
)  +R  1R )  e.  R.  ->  ( (
( F `  J
)  +R  1R )  +R  0R )  =  ( ( F `  J
)  +R  1R )
)
3212, 31syl 14 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( ( F `  J
)  +R  1R )  +R  0R )  =  ( ( F `  J
)  +R  1R )
)
3330, 32eqtrd 2147 . 2  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( ( F `  J
)  +R  1R )  +R  ( ( A  .R  -1R )  +R  A
) )  =  ( ( F `  J
)  +R  1R )
)
3422, 24, 333eqtrd 2151 1  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( G `  J )  +R  A )  =  ( ( F `  J )  +R  1R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463   {cab 2101   A.wral 2390   <.cop 3496   class class class wbr 3895    |-> cmpt 3949   -->wf 5077   ` cfv 5081  (class class class)co 5728   1oc1o 6260   [cec 6381   N.cnpi 7025    <N clti 7028    ~Q ceq 7032   *Qcrq 7037    <Q cltq 7038   1Pc1p 7045    +P. cpp 7046    ~R cer 7049   R.cnr 7050   0Rc0r 7051   1Rc1r 7052   -1Rcm1r 7053    +R cplr 7054    .R cmr 7055    <R cltr 7056
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-2o 6268  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7057  df-pli 7058  df-mi 7059  df-lti 7060  df-plpq 7097  df-mpq 7098  df-enq 7100  df-nqqs 7101  df-plqqs 7102  df-mqqs 7103  df-1nqqs 7104  df-rq 7105  df-ltnqqs 7106  df-enq0 7177  df-nq0 7178  df-0nq0 7179  df-plq0 7180  df-mq0 7181  df-inp 7219  df-i1p 7220  df-iplp 7221  df-imp 7222  df-enr 7466  df-nr 7467  df-plr 7468  df-mr 7469  df-ltr 7470  df-0r 7471  df-1r 7472  df-m1r 7473
This theorem is referenced by:  caucvgsrlemoffcau  7537  caucvgsrlemoffgt1  7538  caucvgsrlemoffres  7539
  Copyright terms: Public domain W3C validator