ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemofff Unicode version

Theorem caucvgsrlemofff 7798
Description: Lemma for caucvgsr 7803. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlembnd.bnd  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
caucvgsrlembnd.offset  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
Assertion
Ref Expression
caucvgsrlemofff  |-  ( ph  ->  G : N. --> R. )
Distinct variable groups:    A, m    ph, a
Allowed substitution hints:    ph( u, k, m, n, l)    A( u, k, n, a, l)    F( u, k, m, n, a, l)    G( u, k, m, n, a, l)

Proof of Theorem caucvgsrlemofff
StepHypRef Expression
1 caucvgsr.f . . . . 5  |-  ( ph  ->  F : N. --> R. )
21ffvelcdmda 5653 . . . 4  |-  ( (
ph  /\  a  e.  N. )  ->  ( F `
 a )  e. 
R. )
3 1sr 7752 . . . 4  |-  1R  e.  R.
4 addclsr 7754 . . . 4  |-  ( ( ( F `  a
)  e.  R.  /\  1R  e.  R. )  -> 
( ( F `  a )  +R  1R )  e.  R. )
52, 3, 4sylancl 413 . . 3  |-  ( (
ph  /\  a  e.  N. )  ->  ( ( F `  a )  +R  1R )  e. 
R. )
6 caucvgsrlembnd.bnd . . . . . 6  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
76caucvgsrlemasr 7791 . . . . 5  |-  ( ph  ->  A  e.  R. )
87adantr 276 . . . 4  |-  ( (
ph  /\  a  e.  N. )  ->  A  e. 
R. )
9 m1r 7753 . . . 4  |-  -1R  e.  R.
10 mulclsr 7755 . . . 4  |-  ( ( A  e.  R.  /\  -1R  e.  R. )  -> 
( A  .R  -1R )  e.  R. )
118, 9, 10sylancl 413 . . 3  |-  ( (
ph  /\  a  e.  N. )  ->  ( A  .R  -1R )  e. 
R. )
12 addclsr 7754 . . 3  |-  ( ( ( ( F `  a )  +R  1R )  e.  R.  /\  ( A  .R  -1R )  e. 
R. )  ->  (
( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) )  e.  R. )
135, 11, 12syl2anc 411 . 2  |-  ( (
ph  /\  a  e.  N. )  ->  ( ( ( F `  a
)  +R  1R )  +R  ( A  .R  -1R ) )  e.  R. )
14 caucvgsrlembnd.offset . 2  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
1513, 14fmptd 5672 1  |-  ( ph  ->  G : N. --> R. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   <.cop 3597   class class class wbr 4005    |-> cmpt 4066   -->wf 5214   ` cfv 5218  (class class class)co 5877   1oc1o 6412   [cec 6535   N.cnpi 7273    <N clti 7276    ~Q ceq 7280   *Qcrq 7285    <Q cltq 7286   1Pc1p 7293    +P. cpp 7294    ~R cer 7297   R.cnr 7298   1Rc1r 7300   -1Rcm1r 7301    +R cplr 7302    .R cmr 7303    <R cltr 7304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-i1p 7468  df-iplp 7469  df-imp 7470  df-enr 7727  df-nr 7728  df-plr 7729  df-mr 7730  df-ltr 7731  df-1r 7733  df-m1r 7734
This theorem is referenced by:  caucvgsrlemoffcau  7799  caucvgsrlemoffgt1  7800  caucvgsrlemoffres  7801
  Copyright terms: Public domain W3C validator