| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsumv | Unicode version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| cbvsum.1 |
|
| Ref | Expression |
|---|---|
| cbvsumv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsum.1 |
. 2
| |
| 2 | nfcv 2350 |
. 2
| |
| 3 | nfcv 2350 |
. 2
| |
| 4 | nfcv 2350 |
. 2
| |
| 5 | nfcv 2350 |
. 2
| |
| 6 | 1, 2, 3, 4, 5 | cbvsum 11786 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 df-seqfrec 10630 df-sumdc 11780 |
| This theorem is referenced by: isumge0 11856 telfsumo 11892 fsumparts 11896 binomlem 11909 mertenslemi1 11961 mertenslem2 11962 mertensabs 11963 efaddlem 12100 plymullem1 15335 plyadd 15338 plymul 15339 plycoeid3 15344 plyco 15346 plycj 15348 dvply1 15352 trilpo 16184 redcwlpo 16196 nconstwlpo 16207 neapmkv 16209 |
| Copyright terms: Public domain | W3C validator |