ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsumv Unicode version

Theorem cbvsumv 11705
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Hypothesis
Ref Expression
cbvsum.1  |-  ( j  =  k  ->  B  =  C )
Assertion
Ref Expression
cbvsumv  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Distinct variable groups:    A, j, k    B, k    C, j
Allowed substitution hints:    B( j)    C( k)

Proof of Theorem cbvsumv
StepHypRef Expression
1 cbvsum.1 . 2  |-  ( j  =  k  ->  B  =  C )
2 nfcv 2348 . 2  |-  F/_ k A
3 nfcv 2348 . 2  |-  F/_ j A
4 nfcv 2348 . 2  |-  F/_ k B
5 nfcv 2348 . 2  |-  F/_ j C
61, 2, 3, 4, 5cbvsum 11704 1  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   sum_csu 11697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-cnv 4684  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-recs 6393  df-frec 6479  df-seqfrec 10595  df-sumdc 11698
This theorem is referenced by:  isumge0  11774  telfsumo  11810  fsumparts  11814  binomlem  11827  mertenslemi1  11879  mertenslem2  11880  mertensabs  11881  efaddlem  12018  plymullem1  15253  plyadd  15256  plymul  15257  plycoeid3  15262  plyco  15264  plycj  15266  dvply1  15270  trilpo  16019  redcwlpo  16031  nconstwlpo  16042  neapmkv  16044
  Copyright terms: Public domain W3C validator