ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsumv Unicode version

Theorem cbvsumv 11672
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Hypothesis
Ref Expression
cbvsum.1  |-  ( j  =  k  ->  B  =  C )
Assertion
Ref Expression
cbvsumv  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Distinct variable groups:    A, j, k    B, k    C, j
Allowed substitution hints:    B( j)    C( k)

Proof of Theorem cbvsumv
StepHypRef Expression
1 cbvsum.1 . 2  |-  ( j  =  k  ->  B  =  C )
2 nfcv 2348 . 2  |-  F/_ k A
3 nfcv 2348 . 2  |-  F/_ j A
4 nfcv 2348 . 2  |-  F/_ k B
5 nfcv 2348 . 2  |-  F/_ j C
61, 2, 3, 4, 5cbvsum 11671 1  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   sum_csu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-seqfrec 10593  df-sumdc 11665
This theorem is referenced by:  isumge0  11741  telfsumo  11777  fsumparts  11781  binomlem  11794  mertenslemi1  11846  mertenslem2  11847  mertensabs  11848  efaddlem  11985  plymullem1  15220  plyadd  15223  plymul  15224  plycoeid3  15229  plyco  15231  plycj  15233  dvply1  15237  trilpo  15982  redcwlpo  15994  nconstwlpo  16005  neapmkv  16007
  Copyright terms: Public domain W3C validator