ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsumv Unicode version

Theorem cbvsumv 11787
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Hypothesis
Ref Expression
cbvsum.1  |-  ( j  =  k  ->  B  =  C )
Assertion
Ref Expression
cbvsumv  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Distinct variable groups:    A, j, k    B, k    C, j
Allowed substitution hints:    B( j)    C( k)

Proof of Theorem cbvsumv
StepHypRef Expression
1 cbvsum.1 . 2  |-  ( j  =  k  ->  B  =  C )
2 nfcv 2350 . 2  |-  F/_ k A
3 nfcv 2350 . 2  |-  F/_ j A
4 nfcv 2350 . 2  |-  F/_ k B
5 nfcv 2350 . 2  |-  F/_ j C
61, 2, 3, 4, 5cbvsum 11786 1  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   sum_csu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-seqfrec 10630  df-sumdc 11780
This theorem is referenced by:  isumge0  11856  telfsumo  11892  fsumparts  11896  binomlem  11909  mertenslemi1  11961  mertenslem2  11962  mertensabs  11963  efaddlem  12100  plymullem1  15335  plyadd  15338  plymul  15339  plycoeid3  15344  plyco  15346  plycj  15348  dvply1  15352  trilpo  16184  redcwlpo  16196  nconstwlpo  16207  neapmkv  16209
  Copyright terms: Public domain W3C validator