ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsumv Unicode version

Theorem cbvsumv 10813
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Hypothesis
Ref Expression
cbvsum.1  |-  ( j  =  k  ->  B  =  C )
Assertion
Ref Expression
cbvsumv  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Distinct variable groups:    A, j, k    B, k    C, j
Allowed substitution hints:    B( j)    C( k)

Proof of Theorem cbvsumv
StepHypRef Expression
1 cbvsum.1 . 2  |-  ( j  =  k  ->  B  =  C )
2 nfcv 2229 . 2  |-  F/_ k A
3 nfcv 2229 . 2  |-  F/_ j A
4 nfcv 2229 . 2  |-  F/_ k B
5 nfcv 2229 . 2  |-  F/_ j C
61, 2, 3, 4, 5cbvsum 10812 1  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290   sum_csu 10805
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-un 3006  df-in 3008  df-ss 3015  df-if 3400  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-mpt 3909  df-cnv 4462  df-dm 4464  df-rn 4465  df-res 4466  df-iota 4995  df-fv 5038  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-recs 6086  df-frec 6172  df-iseq 9916  df-isum 10806
This theorem is referenced by:  isumge0  10887  telfsumo  10923  fsumparts  10927  binomlem  10940  mertenslemi1  10992  mertenslem2  10993  mertensabs  10994  efaddlem  11027
  Copyright terms: Public domain W3C validator