| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsumv | Unicode version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| cbvsum.1 |
|
| Ref | Expression |
|---|---|
| cbvsumv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsum.1 |
. 2
| |
| 2 | nfcv 2348 |
. 2
| |
| 3 | nfcv 2348 |
. 2
| |
| 4 | nfcv 2348 |
. 2
| |
| 5 | nfcv 2348 |
. 2
| |
| 6 | 1, 2, 3, 4, 5 | cbvsum 11704 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-cnv 4684 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-recs 6393 df-frec 6479 df-seqfrec 10595 df-sumdc 11698 |
| This theorem is referenced by: isumge0 11774 telfsumo 11810 fsumparts 11814 binomlem 11827 mertenslemi1 11879 mertenslem2 11880 mertensabs 11881 efaddlem 12018 plymullem1 15253 plyadd 15256 plymul 15257 plycoeid3 15262 plyco 15264 plycj 15266 dvply1 15270 trilpo 16019 redcwlpo 16031 nconstwlpo 16042 neapmkv 16044 |
| Copyright terms: Public domain | W3C validator |