| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsumv | Unicode version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| cbvsum.1 |
|
| Ref | Expression |
|---|---|
| cbvsumv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsum.1 |
. 2
| |
| 2 | nfcv 2348 |
. 2
| |
| 3 | nfcv 2348 |
. 2
| |
| 4 | nfcv 2348 |
. 2
| |
| 5 | nfcv 2348 |
. 2
| |
| 6 | 1, 2, 3, 4, 5 | cbvsum 11671 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-seqfrec 10593 df-sumdc 11665 |
| This theorem is referenced by: isumge0 11741 telfsumo 11777 fsumparts 11781 binomlem 11794 mertenslemi1 11846 mertenslem2 11847 mertensabs 11848 efaddlem 11985 plymullem1 15220 plyadd 15223 plymul 15224 plycoeid3 15229 plyco 15231 plycj 15233 dvply1 15237 trilpo 15982 redcwlpo 15994 nconstwlpo 16005 neapmkv 16007 |
| Copyright terms: Public domain | W3C validator |