ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsumv Unicode version

Theorem cbvsumv 11382
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Hypothesis
Ref Expression
cbvsum.1  |-  ( j  =  k  ->  B  =  C )
Assertion
Ref Expression
cbvsumv  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Distinct variable groups:    A, j, k    B, k    C, j
Allowed substitution hints:    B( j)    C( k)

Proof of Theorem cbvsumv
StepHypRef Expression
1 cbvsum.1 . 2  |-  ( j  =  k  ->  B  =  C )
2 nfcv 2329 . 2  |-  F/_ k A
3 nfcv 2329 . 2  |-  F/_ j A
4 nfcv 2329 . 2  |-  F/_ k B
5 nfcv 2329 . 2  |-  F/_ j C
61, 2, 3, 4, 5cbvsum 11381 1  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363   sum_csu 11374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-if 3547  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-cnv 4646  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-recs 6319  df-frec 6405  df-seqfrec 10459  df-sumdc 11375
This theorem is referenced by:  isumge0  11451  telfsumo  11487  fsumparts  11491  binomlem  11504  mertenslemi1  11556  mertenslem2  11557  mertensabs  11558  efaddlem  11695  trilpo  15019  redcwlpo  15031  nconstwlpo  15042  neapmkv  15044
  Copyright terms: Public domain W3C validator