| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsumv | Unicode version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| cbvsum.1 |
|
| Ref | Expression |
|---|---|
| cbvsumv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsum.1 |
. 2
| |
| 2 | nfcv 2372 |
. 2
| |
| 3 | nfcv 2372 |
. 2
| |
| 4 | nfcv 2372 |
. 2
| |
| 5 | nfcv 2372 |
. 2
| |
| 6 | 1, 2, 3, 4, 5 | cbvsum 11871 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-recs 6451 df-frec 6537 df-seqfrec 10670 df-sumdc 11865 |
| This theorem is referenced by: isumge0 11941 telfsumo 11977 fsumparts 11981 binomlem 11994 mertenslemi1 12046 mertenslem2 12047 mertensabs 12048 efaddlem 12185 plymullem1 15422 plyadd 15425 plymul 15426 plycoeid3 15431 plyco 15433 plycj 15435 dvply1 15439 trilpo 16411 redcwlpo 16423 nconstwlpo 16434 neapmkv 16436 |
| Copyright terms: Public domain | W3C validator |