ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumfct Unicode version

Theorem sumfct 11337
Description: A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.)
Assertion
Ref Expression
sumfct  |-  ( A. k  e.  A  B  e.  CC  ->  sum_ j  e.  A  ( ( k  e.  A  |->  B ) `
 j )  = 
sum_ k  e.  A  B )
Distinct variable groups:    A, j, k    B, j
Allowed substitution hint:    B( k)

Proof of Theorem sumfct
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( A. k  e.  A  B  e.  CC  /\  j  e.  A )  ->  j  e.  A )
2 nfcsb1v 3082 . . . . . . 7  |-  F/_ k [_ j  /  k ]_ B
32nfel1 2323 . . . . . 6  |-  F/ k
[_ j  /  k ]_ B  e.  CC
4 csbeq1a 3058 . . . . . . 7  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
54eleq1d 2239 . . . . . 6  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
63, 5rspc 2828 . . . . 5  |-  ( j  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ j  /  k ]_ B  e.  CC )
)
76impcom 124 . . . 4  |-  ( ( A. k  e.  A  B  e.  CC  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
8 eqid 2170 . . . . 5  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
98fvmpts 5574 . . . 4  |-  ( ( j  e.  A  /\  [_ j  /  k ]_ B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  j )  =  [_ j  /  k ]_ B
)
101, 7, 9syl2anc 409 . . 3  |-  ( ( A. k  e.  A  B  e.  CC  /\  j  e.  A )  ->  (
( k  e.  A  |->  B ) `  j
)  =  [_ j  /  k ]_ B
)
1110sumeq2dv 11331 . 2  |-  ( A. k  e.  A  B  e.  CC  ->  sum_ j  e.  A  ( ( k  e.  A  |->  B ) `
 j )  = 
sum_ j  e.  A  [_ j  /  k ]_ B )
12 nfcv 2312 . . 3  |-  F/_ j B
1312, 2, 4cbvsumi 11325 . 2  |-  sum_ k  e.  A  B  =  sum_ j  e.  A  [_ j  /  k ]_ B
1411, 13eqtr4di 2221 1  |-  ( A. k  e.  A  B  e.  CC  ->  sum_ j  e.  A  ( ( k  e.  A  |->  B ) `
 j )  = 
sum_ k  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   [_csb 3049    |-> cmpt 4050   ` cfv 5198   CCcc 7772   sum_csu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-seqfrec 10402  df-sumdc 11317
This theorem is referenced by:  fsumf1o  11353  isumss  11354  fisumss  11355  fsumcl2lem  11361  fsumadd  11369  isumclim3  11386  isummulc2  11389  fsummulc2  11411  isumshft  11453
  Copyright terms: Public domain W3C validator