Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvsumi | GIF version |
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) |
Ref | Expression |
---|---|
cbvsumi.1 | ⊢ Ⅎ𝑘𝐵 |
cbvsumi.2 | ⊢ Ⅎ𝑗𝐶 |
cbvsumi.3 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvsumi | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsumi.3 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
2 | nfcv 2312 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | nfcv 2312 | . 2 ⊢ Ⅎ𝑗𝐴 | |
4 | cbvsumi.1 | . 2 ⊢ Ⅎ𝑘𝐵 | |
5 | cbvsumi.2 | . 2 ⊢ Ⅎ𝑗𝐶 | |
6 | 1, 2, 3, 4, 5 | cbvsum 11323 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 Ⅎwnfc 2299 Σcsu 11316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-seqfrec 10402 df-sumdc 11317 |
This theorem is referenced by: sumfct 11337 isumss2 11356 fsumzcl2 11368 fsumsplitf 11371 sumsnf 11372 sumsns 11378 fsumsplitsnun 11382 fsum2dlemstep 11397 fisumcom2 11401 fsumshftm 11408 fsumiun 11440 |
Copyright terms: Public domain | W3C validator |