ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsumi GIF version

Theorem cbvsumi 11881
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
Hypotheses
Ref Expression
cbvsumi.1 𝑘𝐵
cbvsumi.2 𝑗𝐶
cbvsumi.3 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvsumi Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Distinct variable group:   𝑗,𝑘,𝐴
Allowed substitution hints:   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvsumi
StepHypRef Expression
1 cbvsumi.3 . 2 (𝑗 = 𝑘𝐵 = 𝐶)
2 nfcv 2372 . 2 𝑘𝐴
3 nfcv 2372 . 2 𝑗𝐴
4 cbvsumi.1 . 2 𝑘𝐵
5 cbvsumi.2 . 2 𝑗𝐶
61, 2, 3, 4, 5cbvsum 11879 1 Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wnfc 2359  Σcsu 11872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-recs 6457  df-frec 6543  df-seqfrec 10678  df-sumdc 11873
This theorem is referenced by:  sumfct  11893  isumss2  11912  fsumzcl2  11924  fsumsplitf  11927  sumsnf  11928  sumsns  11934  fsumsplitsnun  11938  fsum2dlemstep  11953  fisumcom2  11957  fsumshftm  11964  fsumiun  11996  elplyd  15423  fsumdvdsmul  15673
  Copyright terms: Public domain W3C validator