| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvsumi | GIF version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) | 
| Ref | Expression | 
|---|---|
| cbvsumi.1 | ⊢ Ⅎ𝑘𝐵 | 
| cbvsumi.2 | ⊢ Ⅎ𝑗𝐶 | 
| cbvsumi.3 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | 
| Ref | Expression | 
|---|---|
| cbvsumi | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvsumi.3 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑘𝐴 | |
| 3 | nfcv 2339 | . 2 ⊢ Ⅎ𝑗𝐴 | |
| 4 | cbvsumi.1 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 5 | cbvsumi.2 | . 2 ⊢ Ⅎ𝑗𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cbvsum 11525 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 Ⅎwnfc 2326 Σcsu 11518 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-seqfrec 10540 df-sumdc 11519 | 
| This theorem is referenced by: sumfct 11539 isumss2 11558 fsumzcl2 11570 fsumsplitf 11573 sumsnf 11574 sumsns 11580 fsumsplitsnun 11584 fsum2dlemstep 11599 fisumcom2 11603 fsumshftm 11610 fsumiun 11642 elplyd 14977 fsumdvdsmul 15227 | 
| Copyright terms: Public domain | W3C validator |