Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvsumi | GIF version |
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) |
Ref | Expression |
---|---|
cbvsumi.1 | ⊢ Ⅎ𝑘𝐵 |
cbvsumi.2 | ⊢ Ⅎ𝑗𝐶 |
cbvsumi.3 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvsumi | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsumi.3 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
2 | nfcv 2308 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | nfcv 2308 | . 2 ⊢ Ⅎ𝑗𝐴 | |
4 | cbvsumi.1 | . 2 ⊢ Ⅎ𝑘𝐵 | |
5 | cbvsumi.2 | . 2 ⊢ Ⅎ𝑗𝐶 | |
6 | 1, 2, 3, 4, 5 | cbvsum 11301 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 Ⅎwnfc 2295 Σcsu 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-seqfrec 10381 df-sumdc 11295 |
This theorem is referenced by: sumfct 11315 isumss2 11334 fsumzcl2 11346 fsumsplitf 11349 sumsnf 11350 sumsns 11356 fsumsplitsnun 11360 fsum2dlemstep 11375 fisumcom2 11379 fsumshftm 11386 fsumiun 11418 |
Copyright terms: Public domain | W3C validator |