| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsumi | GIF version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) |
| Ref | Expression |
|---|---|
| cbvsumi.1 | ⊢ Ⅎ𝑘𝐵 |
| cbvsumi.2 | ⊢ Ⅎ𝑗𝐶 |
| cbvsumi.3 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvsumi | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsumi.3 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑘𝐴 | |
| 3 | nfcv 2372 | . 2 ⊢ Ⅎ𝑗𝐴 | |
| 4 | cbvsumi.1 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 5 | cbvsumi.2 | . 2 ⊢ Ⅎ𝑗𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cbvsum 11857 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 Ⅎwnfc 2359 Σcsu 11850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-cnv 4724 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-recs 6441 df-frec 6527 df-seqfrec 10657 df-sumdc 11851 |
| This theorem is referenced by: sumfct 11871 isumss2 11890 fsumzcl2 11902 fsumsplitf 11905 sumsnf 11906 sumsns 11912 fsumsplitsnun 11916 fsum2dlemstep 11931 fisumcom2 11935 fsumshftm 11942 fsumiun 11974 elplyd 15400 fsumdvdsmul 15650 |
| Copyright terms: Public domain | W3C validator |