| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsumi | GIF version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) |
| Ref | Expression |
|---|---|
| cbvsumi.1 | ⊢ Ⅎ𝑘𝐵 |
| cbvsumi.2 | ⊢ Ⅎ𝑗𝐶 |
| cbvsumi.3 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvsumi | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsumi.3 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
| 2 | nfcv 2349 | . 2 ⊢ Ⅎ𝑘𝐴 | |
| 3 | nfcv 2349 | . 2 ⊢ Ⅎ𝑗𝐴 | |
| 4 | cbvsumi.1 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 5 | cbvsumi.2 | . 2 ⊢ Ⅎ𝑗𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cbvsum 11721 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 Ⅎwnfc 2336 Σcsu 11714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-if 3574 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-mpt 4112 df-cnv 4688 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-recs 6401 df-frec 6487 df-seqfrec 10606 df-sumdc 11715 |
| This theorem is referenced by: sumfct 11735 isumss2 11754 fsumzcl2 11766 fsumsplitf 11769 sumsnf 11770 sumsns 11776 fsumsplitsnun 11780 fsum2dlemstep 11795 fisumcom2 11799 fsumshftm 11806 fsumiun 11838 elplyd 15263 fsumdvdsmul 15513 |
| Copyright terms: Public domain | W3C validator |