ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsumi GIF version

Theorem cbvsumi 11544
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
Hypotheses
Ref Expression
cbvsumi.1 𝑘𝐵
cbvsumi.2 𝑗𝐶
cbvsumi.3 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvsumi Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Distinct variable group:   𝑗,𝑘,𝐴
Allowed substitution hints:   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvsumi
StepHypRef Expression
1 cbvsumi.3 . 2 (𝑗 = 𝑘𝐵 = 𝐶)
2 nfcv 2339 . 2 𝑘𝐴
3 nfcv 2339 . 2 𝑗𝐴
4 cbvsumi.1 . 2 𝑘𝐵
5 cbvsumi.2 . 2 𝑗𝐶
61, 2, 3, 4, 5cbvsum 11542 1 Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wnfc 2326  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-seqfrec 10557  df-sumdc 11536
This theorem is referenced by:  sumfct  11556  isumss2  11575  fsumzcl2  11587  fsumsplitf  11590  sumsnf  11591  sumsns  11597  fsumsplitsnun  11601  fsum2dlemstep  11616  fisumcom2  11620  fsumshftm  11627  fsumiun  11659  elplyd  15061  fsumdvdsmul  15311
  Copyright terms: Public domain W3C validator