| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cndsex | GIF version | ||
| Description: The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
| Ref | Expression |
|---|---|
| cndsex | ⊢ (abs ∘ − ) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abs 11354 | . . 3 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
| 2 | cnex 8056 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | 2 | mptex 5817 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) ∈ V |
| 4 | 1, 3 | eqeltri 2279 | . 2 ⊢ abs ∈ V |
| 5 | df-sub 8252 | . . 3 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | |
| 6 | 2, 2 | mpoex 6307 | . . 3 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) ∈ V |
| 7 | 5, 6 | eqeltri 2279 | . 2 ⊢ − ∈ V |
| 8 | 4, 7 | coex 5233 | 1 ⊢ (abs ∘ − ) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 ↦ cmpt 4109 ∘ ccom 4683 ‘cfv 5276 ℩crio 5905 (class class class)co 5951 ∈ cmpo 5953 ℂcc 7930 + caddc 7935 · cmul 7937 − cmin 8250 ∗ccj 11194 √csqrt 11351 abscabs 11352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-sub 8252 df-abs 11354 |
| This theorem is referenced by: cntopex 14360 cnfldstr 14364 cnfldds 14374 |
| Copyright terms: Public domain | W3C validator |