| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cndsex | GIF version | ||
| Description: The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
| Ref | Expression |
|---|---|
| cndsex | ⊢ (abs ∘ − ) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abs 11518 | . . 3 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
| 2 | cnex 8131 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | 2 | mptex 5869 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) ∈ V |
| 4 | 1, 3 | eqeltri 2302 | . 2 ⊢ abs ∈ V |
| 5 | df-sub 8327 | . . 3 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | |
| 6 | 2, 2 | mpoex 6366 | . . 3 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) ∈ V |
| 7 | 5, 6 | eqeltri 2302 | . 2 ⊢ − ∈ V |
| 8 | 4, 7 | coex 5274 | 1 ⊢ (abs ∘ − ) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 ↦ cmpt 4145 ∘ ccom 4723 ‘cfv 5318 ℩crio 5959 (class class class)co 6007 ∈ cmpo 6009 ℂcc 8005 + caddc 8010 · cmul 8012 − cmin 8325 ∗ccj 11358 √csqrt 11515 abscabs 11516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-sub 8327 df-abs 11518 |
| This theorem is referenced by: cntopex 14526 cnfldstr 14530 cnfldds 14540 |
| Copyright terms: Public domain | W3C validator |