| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cndsex | GIF version | ||
| Description: The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
| Ref | Expression |
|---|---|
| cndsex | ⊢ (abs ∘ − ) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abs 11181 | . . 3 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
| 2 | cnex 8020 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | 2 | mptex 5791 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) ∈ V |
| 4 | 1, 3 | eqeltri 2269 | . 2 ⊢ abs ∈ V |
| 5 | df-sub 8216 | . . 3 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | |
| 6 | 2, 2 | mpoex 6281 | . . 3 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) ∈ V |
| 7 | 5, 6 | eqeltri 2269 | . 2 ⊢ − ∈ V |
| 8 | 4, 7 | coex 5216 | 1 ⊢ (abs ∘ − ) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4095 ∘ ccom 4668 ‘cfv 5259 ℩crio 5879 (class class class)co 5925 ∈ cmpo 5927 ℂcc 7894 + caddc 7899 · cmul 7901 − cmin 8214 ∗ccj 11021 √csqrt 11178 abscabs 11179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-sub 8216 df-abs 11181 |
| This theorem is referenced by: cntopex 14186 cnfldstr 14190 cnfldds 14200 |
| Copyright terms: Public domain | W3C validator |