| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cndsex | GIF version | ||
| Description: The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
| Ref | Expression |
|---|---|
| cndsex | ⊢ (abs ∘ − ) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abs 11476 | . . 3 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
| 2 | cnex 8091 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | 2 | mptex 5838 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) ∈ V |
| 4 | 1, 3 | eqeltri 2282 | . 2 ⊢ abs ∈ V |
| 5 | df-sub 8287 | . . 3 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | |
| 6 | 2, 2 | mpoex 6330 | . . 3 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) ∈ V |
| 7 | 5, 6 | eqeltri 2282 | . 2 ⊢ − ∈ V |
| 8 | 4, 7 | coex 5250 | 1 ⊢ (abs ∘ − ) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 Vcvv 2779 ↦ cmpt 4124 ∘ ccom 4700 ‘cfv 5294 ℩crio 5926 (class class class)co 5974 ∈ cmpo 5976 ℂcc 7965 + caddc 7970 · cmul 7972 − cmin 8285 ∗ccj 11316 √csqrt 11473 abscabs 11474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-sub 8287 df-abs 11476 |
| This theorem is referenced by: cntopex 14483 cnfldstr 14487 cnfldds 14497 |
| Copyright terms: Public domain | W3C validator |