![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cndsex | GIF version |
Description: The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
Ref | Expression |
---|---|
cndsex | ⊢ (abs ∘ − ) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abs 11146 | . . 3 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
2 | cnex 7998 | . . . 4 ⊢ ℂ ∈ V | |
3 | 2 | mptex 5785 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) ∈ V |
4 | 1, 3 | eqeltri 2266 | . 2 ⊢ abs ∈ V |
5 | df-sub 8194 | . . 3 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | |
6 | 2, 2 | mpoex 6269 | . . 3 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) ∈ V |
7 | 5, 6 | eqeltri 2266 | . 2 ⊢ − ∈ V |
8 | 4, 7 | coex 5212 | 1 ⊢ (abs ∘ − ) ∈ V |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 Vcvv 2760 ↦ cmpt 4091 ∘ ccom 4664 ‘cfv 5255 ℩crio 5873 (class class class)co 5919 ∈ cmpo 5921 ℂcc 7872 + caddc 7877 · cmul 7879 − cmin 8192 ∗ccj 10986 √csqrt 11143 abscabs 11144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-sub 8194 df-abs 11146 |
This theorem is referenced by: cntopex 14053 cnfldstr 14057 cnfldds 14067 |
Copyright terms: Public domain | W3C validator |