ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1o GIF version

Theorem cnvf1o 6334
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . 2 (𝑥𝐴 {𝑥}) = (𝑥𝐴 {𝑥})
2 snexg 4244 . . . 4 (𝑥𝐴 → {𝑥} ∈ V)
3 cnvexg 5239 . . . 4 ({𝑥} ∈ V → {𝑥} ∈ V)
4 uniexg 4504 . . . 4 ({𝑥} ∈ V → {𝑥} ∈ V)
52, 3, 43syl 17 . . 3 (𝑥𝐴 {𝑥} ∈ V)
65adantl 277 . 2 ((Rel 𝐴𝑥𝐴) → {𝑥} ∈ V)
7 snexg 4244 . . . 4 (𝑦𝐴 → {𝑦} ∈ V)
8 cnvexg 5239 . . . 4 ({𝑦} ∈ V → {𝑦} ∈ V)
9 uniexg 4504 . . . 4 ({𝑦} ∈ V → {𝑦} ∈ V)
107, 8, 93syl 17 . . 3 (𝑦𝐴 {𝑦} ∈ V)
1110adantl 277 . 2 ((Rel 𝐴𝑦𝐴) → {𝑦} ∈ V)
12 cnvf1olem 6333 . . 3 ((Rel 𝐴 ∧ (𝑥𝐴𝑦 = {𝑥})) → (𝑦𝐴𝑥 = {𝑦}))
13 relcnv 5079 . . . . 5 Rel 𝐴
14 simpr 110 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑦𝐴𝑥 = {𝑦}))
15 cnvf1olem 6333 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
1613, 14, 15sylancr 414 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
17 dfrel2 5152 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
18 eleq2 2271 . . . . . . 7 (𝐴 = 𝐴 → (𝑥𝐴𝑥𝐴))
1917, 18sylbi 121 . . . . . 6 (Rel 𝐴 → (𝑥𝐴𝑥𝐴))
2019anbi1d 465 . . . . 5 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2120adantr 276 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2216, 21mpbid 147 . . 3 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
2312, 22impbida 596 . 2 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑦𝐴𝑥 = {𝑦})))
241, 6, 11, 23f1od 6172 1 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  Vcvv 2776  {csn 3643   cuni 3864  cmpt 4121  ccnv 4692  Rel wrel 4698  1-1-ontowf1o 5289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250
This theorem is referenced by:  tposf12  6378  cnven  6924  xpcomf1o  6945  fsumcnv  11863  fprodcnv  12051
  Copyright terms: Public domain W3C validator