ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1o GIF version

Theorem cnvf1o 6204
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . 2 (𝑥𝐴 {𝑥}) = (𝑥𝐴 {𝑥})
2 snexg 4170 . . . 4 (𝑥𝐴 → {𝑥} ∈ V)
3 cnvexg 5148 . . . 4 ({𝑥} ∈ V → {𝑥} ∈ V)
4 uniexg 4424 . . . 4 ({𝑥} ∈ V → {𝑥} ∈ V)
52, 3, 43syl 17 . . 3 (𝑥𝐴 {𝑥} ∈ V)
65adantl 275 . 2 ((Rel 𝐴𝑥𝐴) → {𝑥} ∈ V)
7 snexg 4170 . . . 4 (𝑦𝐴 → {𝑦} ∈ V)
8 cnvexg 5148 . . . 4 ({𝑦} ∈ V → {𝑦} ∈ V)
9 uniexg 4424 . . . 4 ({𝑦} ∈ V → {𝑦} ∈ V)
107, 8, 93syl 17 . . 3 (𝑦𝐴 {𝑦} ∈ V)
1110adantl 275 . 2 ((Rel 𝐴𝑦𝐴) → {𝑦} ∈ V)
12 cnvf1olem 6203 . . 3 ((Rel 𝐴 ∧ (𝑥𝐴𝑦 = {𝑥})) → (𝑦𝐴𝑥 = {𝑦}))
13 relcnv 4989 . . . . 5 Rel 𝐴
14 simpr 109 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑦𝐴𝑥 = {𝑦}))
15 cnvf1olem 6203 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
1613, 14, 15sylancr 412 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
17 dfrel2 5061 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
18 eleq2 2234 . . . . . . 7 (𝐴 = 𝐴 → (𝑥𝐴𝑥𝐴))
1917, 18sylbi 120 . . . . . 6 (Rel 𝐴 → (𝑥𝐴𝑥𝐴))
2019anbi1d 462 . . . . 5 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2120adantr 274 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2216, 21mpbid 146 . . 3 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
2312, 22impbida 591 . 2 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑦𝐴𝑥 = {𝑦})))
241, 6, 11, 23f1od 6052 1 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  Vcvv 2730  {csn 3583   cuni 3796  cmpt 4050  ccnv 4610  Rel wrel 4616  1-1-ontowf1o 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120
This theorem is referenced by:  tposf12  6248  cnven  6786  xpcomf1o  6803  fsumcnv  11400  fprodcnv  11588
  Copyright terms: Public domain W3C validator