ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1o GIF version

Theorem cnvf1o 6228
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . 2 (𝑥𝐴 {𝑥}) = (𝑥𝐴 {𝑥})
2 snexg 4186 . . . 4 (𝑥𝐴 → {𝑥} ∈ V)
3 cnvexg 5168 . . . 4 ({𝑥} ∈ V → {𝑥} ∈ V)
4 uniexg 4441 . . . 4 ({𝑥} ∈ V → {𝑥} ∈ V)
52, 3, 43syl 17 . . 3 (𝑥𝐴 {𝑥} ∈ V)
65adantl 277 . 2 ((Rel 𝐴𝑥𝐴) → {𝑥} ∈ V)
7 snexg 4186 . . . 4 (𝑦𝐴 → {𝑦} ∈ V)
8 cnvexg 5168 . . . 4 ({𝑦} ∈ V → {𝑦} ∈ V)
9 uniexg 4441 . . . 4 ({𝑦} ∈ V → {𝑦} ∈ V)
107, 8, 93syl 17 . . 3 (𝑦𝐴 {𝑦} ∈ V)
1110adantl 277 . 2 ((Rel 𝐴𝑦𝐴) → {𝑦} ∈ V)
12 cnvf1olem 6227 . . 3 ((Rel 𝐴 ∧ (𝑥𝐴𝑦 = {𝑥})) → (𝑦𝐴𝑥 = {𝑦}))
13 relcnv 5008 . . . . 5 Rel 𝐴
14 simpr 110 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑦𝐴𝑥 = {𝑦}))
15 cnvf1olem 6227 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
1613, 14, 15sylancr 414 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
17 dfrel2 5081 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
18 eleq2 2241 . . . . . . 7 (𝐴 = 𝐴 → (𝑥𝐴𝑥𝐴))
1917, 18sylbi 121 . . . . . 6 (Rel 𝐴 → (𝑥𝐴𝑥𝐴))
2019anbi1d 465 . . . . 5 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2120adantr 276 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2216, 21mpbid 147 . . 3 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
2312, 22impbida 596 . 2 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑦𝐴𝑥 = {𝑦})))
241, 6, 11, 23f1od 6076 1 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2739  {csn 3594   cuni 3811  cmpt 4066  ccnv 4627  Rel wrel 4633  1-1-ontowf1o 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144
This theorem is referenced by:  tposf12  6272  cnven  6810  xpcomf1o  6827  fsumcnv  11447  fprodcnv  11635
  Copyright terms: Public domain W3C validator