ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1o GIF version

Theorem cnvf1o 6122
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . 2 (𝑥𝐴 {𝑥}) = (𝑥𝐴 {𝑥})
2 snexg 4108 . . . 4 (𝑥𝐴 → {𝑥} ∈ V)
3 cnvexg 5076 . . . 4 ({𝑥} ∈ V → {𝑥} ∈ V)
4 uniexg 4361 . . . 4 ({𝑥} ∈ V → {𝑥} ∈ V)
52, 3, 43syl 17 . . 3 (𝑥𝐴 {𝑥} ∈ V)
65adantl 275 . 2 ((Rel 𝐴𝑥𝐴) → {𝑥} ∈ V)
7 snexg 4108 . . . 4 (𝑦𝐴 → {𝑦} ∈ V)
8 cnvexg 5076 . . . 4 ({𝑦} ∈ V → {𝑦} ∈ V)
9 uniexg 4361 . . . 4 ({𝑦} ∈ V → {𝑦} ∈ V)
107, 8, 93syl 17 . . 3 (𝑦𝐴 {𝑦} ∈ V)
1110adantl 275 . 2 ((Rel 𝐴𝑦𝐴) → {𝑦} ∈ V)
12 cnvf1olem 6121 . . 3 ((Rel 𝐴 ∧ (𝑥𝐴𝑦 = {𝑥})) → (𝑦𝐴𝑥 = {𝑦}))
13 relcnv 4917 . . . . 5 Rel 𝐴
14 simpr 109 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑦𝐴𝑥 = {𝑦}))
15 cnvf1olem 6121 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
1613, 14, 15sylancr 410 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
17 dfrel2 4989 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
18 eleq2 2203 . . . . . . 7 (𝐴 = 𝐴 → (𝑥𝐴𝑥𝐴))
1917, 18sylbi 120 . . . . . 6 (Rel 𝐴 → (𝑥𝐴𝑥𝐴))
2019anbi1d 460 . . . . 5 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2120adantr 274 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2216, 21mpbid 146 . . 3 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
2312, 22impbida 585 . 2 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑦𝐴𝑥 = {𝑦})))
241, 6, 11, 23f1od 5973 1 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  Vcvv 2686  {csn 3527   cuni 3736  cmpt 3989  ccnv 4538  Rel wrel 4544  1-1-ontowf1o 5122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039
This theorem is referenced by:  tposf12  6166  cnven  6702  xpcomf1o  6719  fsumcnv  11213
  Copyright terms: Public domain W3C validator