ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1o GIF version

Theorem cnvf1o 6313
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . 2 (𝑥𝐴 {𝑥}) = (𝑥𝐴 {𝑥})
2 snexg 4229 . . . 4 (𝑥𝐴 → {𝑥} ∈ V)
3 cnvexg 5221 . . . 4 ({𝑥} ∈ V → {𝑥} ∈ V)
4 uniexg 4487 . . . 4 ({𝑥} ∈ V → {𝑥} ∈ V)
52, 3, 43syl 17 . . 3 (𝑥𝐴 {𝑥} ∈ V)
65adantl 277 . 2 ((Rel 𝐴𝑥𝐴) → {𝑥} ∈ V)
7 snexg 4229 . . . 4 (𝑦𝐴 → {𝑦} ∈ V)
8 cnvexg 5221 . . . 4 ({𝑦} ∈ V → {𝑦} ∈ V)
9 uniexg 4487 . . . 4 ({𝑦} ∈ V → {𝑦} ∈ V)
107, 8, 93syl 17 . . 3 (𝑦𝐴 {𝑦} ∈ V)
1110adantl 277 . 2 ((Rel 𝐴𝑦𝐴) → {𝑦} ∈ V)
12 cnvf1olem 6312 . . 3 ((Rel 𝐴 ∧ (𝑥𝐴𝑦 = {𝑥})) → (𝑦𝐴𝑥 = {𝑦}))
13 relcnv 5061 . . . . 5 Rel 𝐴
14 simpr 110 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑦𝐴𝑥 = {𝑦}))
15 cnvf1olem 6312 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
1613, 14, 15sylancr 414 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
17 dfrel2 5134 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
18 eleq2 2269 . . . . . . 7 (𝐴 = 𝐴 → (𝑥𝐴𝑥𝐴))
1917, 18sylbi 121 . . . . . 6 (Rel 𝐴 → (𝑥𝐴𝑥𝐴))
2019anbi1d 465 . . . . 5 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2120adantr 276 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2216, 21mpbid 147 . . 3 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
2312, 22impbida 596 . 2 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑦𝐴𝑥 = {𝑦})))
241, 6, 11, 23f1od 6151 1 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  Vcvv 2772  {csn 3633   cuni 3850  cmpt 4106  ccnv 4675  Rel wrel 4681  1-1-ontowf1o 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1st 6228  df-2nd 6229
This theorem is referenced by:  tposf12  6357  cnven  6902  xpcomf1o  6922  fsumcnv  11781  fprodcnv  11969
  Copyright terms: Public domain W3C validator