| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvf1o | GIF version | ||
| Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.) |
| Ref | Expression |
|---|---|
| cnvf1o | ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}) = (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}) | |
| 2 | snexg 4217 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ V) | |
| 3 | cnvexg 5207 | . . . 4 ⊢ ({𝑥} ∈ V → ◡{𝑥} ∈ V) | |
| 4 | uniexg 4474 | . . . 4 ⊢ (◡{𝑥} ∈ V → ∪ ◡{𝑥} ∈ V) | |
| 5 | 2, 3, 4 | 3syl 17 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∪ ◡{𝑥} ∈ V) |
| 6 | 5 | adantl 277 | . 2 ⊢ ((Rel 𝐴 ∧ 𝑥 ∈ 𝐴) → ∪ ◡{𝑥} ∈ V) |
| 7 | snexg 4217 | . . . 4 ⊢ (𝑦 ∈ ◡𝐴 → {𝑦} ∈ V) | |
| 8 | cnvexg 5207 | . . . 4 ⊢ ({𝑦} ∈ V → ◡{𝑦} ∈ V) | |
| 9 | uniexg 4474 | . . . 4 ⊢ (◡{𝑦} ∈ V → ∪ ◡{𝑦} ∈ V) | |
| 10 | 7, 8, 9 | 3syl 17 | . . 3 ⊢ (𝑦 ∈ ◡𝐴 → ∪ ◡{𝑦} ∈ V) |
| 11 | 10 | adantl 277 | . 2 ⊢ ((Rel 𝐴 ∧ 𝑦 ∈ ◡𝐴) → ∪ ◡{𝑦} ∈ V) |
| 12 | cnvf1olem 6282 | . . 3 ⊢ ((Rel 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) → (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) | |
| 13 | relcnv 5047 | . . . . 5 ⊢ Rel ◡𝐴 | |
| 14 | simpr 110 | . . . . 5 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) | |
| 15 | cnvf1olem 6282 | . . . . 5 ⊢ ((Rel ◡𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) | |
| 16 | 13, 14, 15 | sylancr 414 | . . . 4 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) |
| 17 | dfrel2 5120 | . . . . . . 7 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
| 18 | eleq2 2260 | . . . . . . 7 ⊢ (◡◡𝐴 = 𝐴 → (𝑥 ∈ ◡◡𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 19 | 17, 18 | sylbi 121 | . . . . . 6 ⊢ (Rel 𝐴 → (𝑥 ∈ ◡◡𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 20 | 19 | anbi1d 465 | . . . . 5 ⊢ (Rel 𝐴 → ((𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}))) |
| 21 | 20 | adantr 276 | . . . 4 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → ((𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}))) |
| 22 | 16, 21 | mpbid 147 | . . 3 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) |
| 23 | 12, 22 | impbida 596 | . 2 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦}))) |
| 24 | 1, 6, 11, 23 | f1od 6126 | 1 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3622 ∪ cuni 3839 ↦ cmpt 4094 ◡ccnv 4662 Rel wrel 4668 –1-1-onto→wf1o 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 |
| This theorem is referenced by: tposf12 6327 cnven 6867 xpcomf1o 6884 fsumcnv 11602 fprodcnv 11790 |
| Copyright terms: Public domain | W3C validator |