ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmex GIF version

Theorem dmex 4990
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.)
Hypothesis
Ref Expression
dmex.1 𝐴 ∈ V
Assertion
Ref Expression
dmex dom 𝐴 ∈ V

Proof of Theorem dmex
StepHypRef Expression
1 dmex.1 . 2 𝐴 ∈ V
2 dmexg 4987 . 2 (𝐴 ∈ V → dom 𝐴 ∈ V)
31, 2ax-mp 5 1 dom 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  dom cdm 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-cnv 4726  df-dm 4728  df-rn 4729
This theorem is referenced by:  ofmres  6279  fo1st  6301  tfrlem8  6462  rdgtfr  6518  rdgruledefgg  6519  rdgon  6530  mapprc  6797  ixpprc  6864  ixpssmap2g  6872  ixpssmapg  6873  bren  6893  brdomg  6895  fundmen  6957  xpassen  6985  mapen  7003  ssenen  7008  hashfacen  11053  shftfval  11327  prdsvallem  13300  prdsval  13301  blfn  14509  metuex  14513
  Copyright terms: Public domain W3C validator