ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmex GIF version

Theorem dmex 4800
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.)
Hypothesis
Ref Expression
dmex.1 𝐴 ∈ V
Assertion
Ref Expression
dmex dom 𝐴 ∈ V

Proof of Theorem dmex
StepHypRef Expression
1 dmex.1 . 2 𝐴 ∈ V
2 dmexg 4798 . 2 (𝐴 ∈ V → dom 𝐴 ∈ V)
31, 2ax-mp 5 1 dom 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 1480  Vcvv 2681  dom cdm 4534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-cnv 4542  df-dm 4544  df-rn 4545
This theorem is referenced by:  ofmres  6027  fo1st  6048  tfrlem8  6208  rdgtfr  6264  rdgruledefgg  6265  rdgon  6276  mapprc  6539  ixpprc  6606  ixpssmap2g  6614  ixpssmapg  6615  bren  6634  brdomg  6635  fundmen  6693  xpassen  6717  mapen  6733  ssenen  6738  hashfacen  10572  shftfval  10586
  Copyright terms: Public domain W3C validator