ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmex GIF version

Theorem dmex 4928
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.)
Hypothesis
Ref Expression
dmex.1 𝐴 ∈ V
Assertion
Ref Expression
dmex dom 𝐴 ∈ V

Proof of Theorem dmex
StepHypRef Expression
1 dmex.1 . 2 𝐴 ∈ V
2 dmexg 4926 . 2 (𝐴 ∈ V → dom 𝐴 ∈ V)
31, 2ax-mp 5 1 dom 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2164  Vcvv 2760  dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by:  ofmres  6188  fo1st  6210  tfrlem8  6371  rdgtfr  6427  rdgruledefgg  6428  rdgon  6439  mapprc  6706  ixpprc  6773  ixpssmap2g  6781  ixpssmapg  6782  bren  6801  brdomg  6802  fundmen  6860  xpassen  6884  mapen  6902  ssenen  6907  hashfacen  10907  shftfval  10965
  Copyright terms: Public domain W3C validator