ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmex GIF version

Theorem dmex 4942
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.)
Hypothesis
Ref Expression
dmex.1 𝐴 ∈ V
Assertion
Ref Expression
dmex dom 𝐴 ∈ V

Proof of Theorem dmex
StepHypRef Expression
1 dmex.1 . 2 𝐴 ∈ V
2 dmexg 4940 . 2 (𝐴 ∈ V → dom 𝐴 ∈ V)
31, 2ax-mp 5 1 dom 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2175  Vcvv 2771  dom cdm 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-cnv 4681  df-dm 4683  df-rn 4684
This theorem is referenced by:  ofmres  6211  fo1st  6233  tfrlem8  6394  rdgtfr  6450  rdgruledefgg  6451  rdgon  6462  mapprc  6729  ixpprc  6796  ixpssmap2g  6804  ixpssmapg  6805  bren  6824  brdomg  6825  fundmen  6883  xpassen  6907  mapen  6925  ssenen  6930  hashfacen  10962  shftfval  11051  prdsvallem  13022  prdsval  13023  blfn  14231  metuex  14235
  Copyright terms: Public domain W3C validator