ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmex GIF version

Theorem dmex 4929
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.)
Hypothesis
Ref Expression
dmex.1 𝐴 ∈ V
Assertion
Ref Expression
dmex dom 𝐴 ∈ V

Proof of Theorem dmex
StepHypRef Expression
1 dmex.1 . 2 𝐴 ∈ V
2 dmexg 4927 . 2 (𝐴 ∈ V → dom 𝐴 ∈ V)
31, 2ax-mp 5 1 dom 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2164  Vcvv 2760  dom cdm 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-cnv 4668  df-dm 4670  df-rn 4671
This theorem is referenced by:  ofmres  6190  fo1st  6212  tfrlem8  6373  rdgtfr  6429  rdgruledefgg  6430  rdgon  6441  mapprc  6708  ixpprc  6775  ixpssmap2g  6783  ixpssmapg  6784  bren  6803  brdomg  6804  fundmen  6862  xpassen  6886  mapen  6904  ssenen  6909  hashfacen  10910  shftfval  10968  blfn  14050  metuex  14054
  Copyright terms: Public domain W3C validator