![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfz1 | GIF version |
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) |
Ref | Expression |
---|---|
elfz1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzval 9685 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)}) | |
2 | 1 | eleq2d 2184 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)})) |
3 | breq2 3899 | . . . . 5 ⊢ (𝑗 = 𝐾 → (𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝐾)) | |
4 | breq1 3898 | . . . . 5 ⊢ (𝑗 = 𝐾 → (𝑗 ≤ 𝑁 ↔ 𝐾 ≤ 𝑁)) | |
5 | 3, 4 | anbi12d 462 | . . . 4 ⊢ (𝑗 = 𝐾 → ((𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
6 | 5 | elrab 2809 | . . 3 ⊢ (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)} ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
7 | 3anass 949 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
8 | 6, 7 | bitr4i 186 | . 2 ⊢ (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)} ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
9 | 2, 8 | syl6bb 195 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 {crab 2394 class class class wbr 3895 (class class class)co 5728 ≤ cle 7725 ℤcz 8958 ...cfz 9683 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-setind 4412 ax-cnex 7636 ax-resscn 7637 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-iota 5046 df-fun 5083 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-neg 7859 df-z 8959 df-fz 9684 |
This theorem is referenced by: elfz 9689 elfz2 9690 fzen 9716 fzaddel 9732 elfzm11 9764 fznn0 9786 phicl2 11735 |
Copyright terms: Public domain | W3C validator |