ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqord2 Unicode version

Theorem eqord2 8382
Description: A strictly decreasing real function on a subset of  RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1  |-  ( x  =  y  ->  A  =  B )
ltord.2  |-  ( x  =  C  ->  A  =  M )
ltord.3  |-  ( x  =  D  ->  A  =  N )
ltord.4  |-  S  C_  RR
ltord.5  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
ltord2.6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  B  <  A ) )
Assertion
Ref Expression
eqord2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
M  =  N ) )
Distinct variable groups:    x, B    x, y, C    x, D, y   
x, M, y    x, N, y    ph, x, y   
x, S, y
Allowed substitution hints:    A( x, y)    B( y)

Proof of Theorem eqord2
StepHypRef Expression
1 ltord.1 . . . 4  |-  ( x  =  y  ->  A  =  B )
21negeqd 8093 . . 3  |-  ( x  =  y  ->  -u A  =  -u B )
3 ltord.2 . . . 4  |-  ( x  =  C  ->  A  =  M )
43negeqd 8093 . . 3  |-  ( x  =  C  ->  -u A  =  -u M )
5 ltord.3 . . . 4  |-  ( x  =  D  ->  A  =  N )
65negeqd 8093 . . 3  |-  ( x  =  D  ->  -u A  =  -u N )
7 ltord.4 . . 3  |-  S  C_  RR
8 ltord.5 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
98renegcld 8278 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  -u A  e.  RR )
10 ltord2.6 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  B  <  A ) )
118ralrimiva 2539 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  A  e.  RR )
121eleq1d 2235 . . . . . . . 8  |-  ( x  =  y  ->  ( A  e.  RR  <->  B  e.  RR ) )
1312rspccva 2829 . . . . . . 7  |-  ( ( A. x  e.  S  A  e.  RR  /\  y  e.  S )  ->  B  e.  RR )
1411, 13sylan 281 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  B  e.  RR )
1514adantrl 470 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  B  e.  RR )
168adantrr 471 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  A  e.  RR )
17 ltneg 8360 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  -u A  <  -u B
) )
1815, 16, 17syl2anc 409 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( B  <  A  <->  -u A  <  -u B
) )
1910, 18sylibd 148 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  -> 
-u A  <  -u B
) )
202, 4, 6, 7, 9, 19eqord1 8381 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <->  -u M  =  -u N
) )
213eleq1d 2235 . . . . . . 7  |-  ( x  =  C  ->  ( A  e.  RR  <->  M  e.  RR ) )
2221rspccva 2829 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  C  e.  S )  ->  M  e.  RR )
2311, 22sylan 281 . . . . 5  |-  ( (
ph  /\  C  e.  S )  ->  M  e.  RR )
2423adantrr 471 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  M  e.  RR )
2524recnd 7927 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  M  e.  CC )
265eleq1d 2235 . . . . . . 7  |-  ( x  =  D  ->  ( A  e.  RR  <->  N  e.  RR ) )
2726rspccva 2829 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  D  e.  S )  ->  N  e.  RR )
2811, 27sylan 281 . . . . 5  |-  ( (
ph  /\  D  e.  S )  ->  N  e.  RR )
2928adantrl 470 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  N  e.  RR )
3029recnd 7927 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  N  e.  CC )
3125, 30neg11ad 8205 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( -u M  =  -u N 
<->  M  =  N ) )
3220, 31bitrd 187 1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
M  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116   class class class wbr 3982   RRcr 7752    < clt 7933   -ucneg 8070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-sub 8071  df-neg 8072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator