| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqord2 | Unicode version | ||
| Description: A strictly decreasing
real function on a subset of  | 
| Ref | Expression | 
|---|---|
| ltord.1 | 
 | 
| ltord.2 | 
 | 
| ltord.3 | 
 | 
| ltord.4 | 
 | 
| ltord.5 | 
 | 
| ltord2.6 | 
 | 
| Ref | Expression | 
|---|---|
| eqord2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltord.1 | 
. . . 4
 | |
| 2 | 1 | negeqd 8221 | 
. . 3
 | 
| 3 | ltord.2 | 
. . . 4
 | |
| 4 | 3 | negeqd 8221 | 
. . 3
 | 
| 5 | ltord.3 | 
. . . 4
 | |
| 6 | 5 | negeqd 8221 | 
. . 3
 | 
| 7 | ltord.4 | 
. . 3
 | |
| 8 | ltord.5 | 
. . . 4
 | |
| 9 | 8 | renegcld 8406 | 
. . 3
 | 
| 10 | ltord2.6 | 
. . . 4
 | |
| 11 | 8 | ralrimiva 2570 | 
. . . . . . 7
 | 
| 12 | 1 | eleq1d 2265 | 
. . . . . . . 8
 | 
| 13 | 12 | rspccva 2867 | 
. . . . . . 7
 | 
| 14 | 11, 13 | sylan 283 | 
. . . . . 6
 | 
| 15 | 14 | adantrl 478 | 
. . . . 5
 | 
| 16 | 8 | adantrr 479 | 
. . . . 5
 | 
| 17 | ltneg 8489 | 
. . . . 5
 | |
| 18 | 15, 16, 17 | syl2anc 411 | 
. . . 4
 | 
| 19 | 10, 18 | sylibd 149 | 
. . 3
 | 
| 20 | 2, 4, 6, 7, 9, 19 | eqord1 8510 | 
. 2
 | 
| 21 | 3 | eleq1d 2265 | 
. . . . . . 7
 | 
| 22 | 21 | rspccva 2867 | 
. . . . . 6
 | 
| 23 | 11, 22 | sylan 283 | 
. . . . 5
 | 
| 24 | 23 | adantrr 479 | 
. . . 4
 | 
| 25 | 24 | recnd 8055 | 
. . 3
 | 
| 26 | 5 | eleq1d 2265 | 
. . . . . . 7
 | 
| 27 | 26 | rspccva 2867 | 
. . . . . 6
 | 
| 28 | 11, 27 | sylan 283 | 
. . . . 5
 | 
| 29 | 28 | adantrl 478 | 
. . . 4
 | 
| 30 | 29 | recnd 8055 | 
. . 3
 | 
| 31 | 25, 30 | neg11ad 8333 | 
. 2
 | 
| 32 | 20, 31 | bitrd 188 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-sub 8199 df-neg 8200 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |