Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqord2 | Unicode version |
Description: A strictly decreasing real function on a subset of is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
ltord.1 | |
ltord.2 | |
ltord.3 | |
ltord.4 | |
ltord.5 | |
ltord2.6 |
Ref | Expression |
---|---|
eqord2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltord.1 | . . . 4 | |
2 | 1 | negeqd 8107 | . . 3 |
3 | ltord.2 | . . . 4 | |
4 | 3 | negeqd 8107 | . . 3 |
5 | ltord.3 | . . . 4 | |
6 | 5 | negeqd 8107 | . . 3 |
7 | ltord.4 | . . 3 | |
8 | ltord.5 | . . . 4 | |
9 | 8 | renegcld 8292 | . . 3 |
10 | ltord2.6 | . . . 4 | |
11 | 8 | ralrimiva 2543 | . . . . . . 7 |
12 | 1 | eleq1d 2239 | . . . . . . . 8 |
13 | 12 | rspccva 2833 | . . . . . . 7 |
14 | 11, 13 | sylan 281 | . . . . . 6 |
15 | 14 | adantrl 475 | . . . . 5 |
16 | 8 | adantrr 476 | . . . . 5 |
17 | ltneg 8374 | . . . . 5 | |
18 | 15, 16, 17 | syl2anc 409 | . . . 4 |
19 | 10, 18 | sylibd 148 | . . 3 |
20 | 2, 4, 6, 7, 9, 19 | eqord1 8395 | . 2 |
21 | 3 | eleq1d 2239 | . . . . . . 7 |
22 | 21 | rspccva 2833 | . . . . . 6 |
23 | 11, 22 | sylan 281 | . . . . 5 |
24 | 23 | adantrr 476 | . . . 4 |
25 | 24 | recnd 7941 | . . 3 |
26 | 5 | eleq1d 2239 | . . . . . . 7 |
27 | 26 | rspccva 2833 | . . . . . 6 |
28 | 11, 27 | sylan 281 | . . . . 5 |
29 | 28 | adantrl 475 | . . . 4 |
30 | 29 | recnd 7941 | . . 3 |
31 | 25, 30 | neg11ad 8219 | . 2 |
32 | 20, 31 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wss 3121 class class class wbr 3987 cr 7766 clt 7947 cneg 8084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-addass 7869 ax-distr 7871 ax-i2m1 7872 ax-0id 7875 ax-rnegex 7876 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-apti 7882 ax-pre-ltadd 7883 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-pnf 7949 df-mnf 7950 df-ltxr 7952 df-sub 8085 df-neg 8086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |