ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqord2 Unicode version

Theorem eqord2 8503
Description: A strictly decreasing real function on a subset of  RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1  |-  ( x  =  y  ->  A  =  B )
ltord.2  |-  ( x  =  C  ->  A  =  M )
ltord.3  |-  ( x  =  D  ->  A  =  N )
ltord.4  |-  S  C_  RR
ltord.5  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
ltord2.6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  B  <  A ) )
Assertion
Ref Expression
eqord2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
M  =  N ) )
Distinct variable groups:    x, B    x, y, C    x, D, y   
x, M, y    x, N, y    ph, x, y   
x, S, y
Allowed substitution hints:    A( x, y)    B( y)

Proof of Theorem eqord2
StepHypRef Expression
1 ltord.1 . . . 4  |-  ( x  =  y  ->  A  =  B )
21negeqd 8214 . . 3  |-  ( x  =  y  ->  -u A  =  -u B )
3 ltord.2 . . . 4  |-  ( x  =  C  ->  A  =  M )
43negeqd 8214 . . 3  |-  ( x  =  C  ->  -u A  =  -u M )
5 ltord.3 . . . 4  |-  ( x  =  D  ->  A  =  N )
65negeqd 8214 . . 3  |-  ( x  =  D  ->  -u A  =  -u N )
7 ltord.4 . . 3  |-  S  C_  RR
8 ltord.5 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
98renegcld 8399 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  -u A  e.  RR )
10 ltord2.6 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  B  <  A ) )
118ralrimiva 2567 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  A  e.  RR )
121eleq1d 2262 . . . . . . . 8  |-  ( x  =  y  ->  ( A  e.  RR  <->  B  e.  RR ) )
1312rspccva 2863 . . . . . . 7  |-  ( ( A. x  e.  S  A  e.  RR  /\  y  e.  S )  ->  B  e.  RR )
1411, 13sylan 283 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  B  e.  RR )
1514adantrl 478 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  B  e.  RR )
168adantrr 479 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  A  e.  RR )
17 ltneg 8481 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  -u A  <  -u B
) )
1815, 16, 17syl2anc 411 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( B  <  A  <->  -u A  <  -u B
) )
1910, 18sylibd 149 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  -> 
-u A  <  -u B
) )
202, 4, 6, 7, 9, 19eqord1 8502 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <->  -u M  =  -u N
) )
213eleq1d 2262 . . . . . . 7  |-  ( x  =  C  ->  ( A  e.  RR  <->  M  e.  RR ) )
2221rspccva 2863 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  C  e.  S )  ->  M  e.  RR )
2311, 22sylan 283 . . . . 5  |-  ( (
ph  /\  C  e.  S )  ->  M  e.  RR )
2423adantrr 479 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  M  e.  RR )
2524recnd 8048 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  M  e.  CC )
265eleq1d 2262 . . . . . . 7  |-  ( x  =  D  ->  ( A  e.  RR  <->  N  e.  RR ) )
2726rspccva 2863 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  D  e.  S )  ->  N  e.  RR )
2811, 27sylan 283 . . . . 5  |-  ( (
ph  /\  D  e.  S )  ->  N  e.  RR )
2928adantrl 478 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  N  e.  RR )
3029recnd 8048 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  N  e.  CC )
3125, 30neg11ad 8326 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( -u M  =  -u N 
<->  M  =  N ) )
3220, 31bitrd 188 1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
M  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   class class class wbr 4029   RRcr 7871    < clt 8054   -ucneg 8191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator