ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfrnel2 Unicode version

Theorem xpsfrnel2 12989
Description: Elementhood in the target space of the function  F appearing in xpsval 12995. (Contributed by Mario Carneiro, 15-Aug-2015.)
Assertion
Ref Expression
xpsfrnel2  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( X  e.  A  /\  Y  e.  B
) )
Distinct variable groups:    A, k    B, k    k, X    k, Y

Proof of Theorem xpsfrnel2
StepHypRef Expression
1 xpsfrnel 12987 . 2  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( { <. (/) ,  X >. ,  <. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B ) )
2 fnpr2ob 12983 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  <->  {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o )
32biimpri 133 . . . 4  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  ->  ( X  e.  _V  /\  Y  e.  _V ) )
433ad2ant1 1020 . . 3  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  -> 
( X  e.  _V  /\  Y  e.  _V )
)
5 elex 2774 . . . 4  |-  ( X  e.  A  ->  X  e.  _V )
6 elex 2774 . . . 4  |-  ( Y  e.  B  ->  Y  e.  _V )
75, 6anim12i 338 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X  e.  _V  /\  Y  e.  _V )
)
8 3anass 984 . . . 4  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  (/) )  e.  A  /\  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 1o )  e.  B ) ) )
9 fnpr2o 12982 . . . . . 6  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o )
109biantrurd 305 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  (/) )  e.  A  /\  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 1o )  e.  B ) ) ) )
11 fvpr0o 12984 . . . . . . 7  |-  ( X  e.  _V  ->  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  =  X )
1211eleq1d 2265 . . . . . 6  |-  ( X  e.  _V  ->  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  (/) )  e.  A  <->  X  e.  A
) )
13 fvpr1o 12985 . . . . . . 7  |-  ( Y  e.  _V  ->  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 1o )  =  Y )
1413eleq1d 2265 . . . . . 6  |-  ( Y  e.  _V  ->  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B  <->  Y  e.  B ) )
1512, 14bi2anan9 606 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  <->  ( X  e.  A  /\  Y  e.  B ) ) )
1610, 15bitr3d 190 . . . 4  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( { <. (/)
,  X >. ,  <. 1o ,  Y >. }  Fn  2o  /\  ( ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B ) )  <-> 
( X  e.  A  /\  Y  e.  B
) ) )
178, 16bitrid 192 . . 3  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( { <. (/)
,  X >. ,  <. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/)
,  X >. ,  <. 1o ,  Y >. } `  (/) )  e.  A  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 1o )  e.  B )  <->  ( X  e.  A  /\  Y  e.  B ) ) )
184, 7, 17pm5.21nii 705 . 2  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  <->  ( X  e.  A  /\  Y  e.  B ) )
191, 18bitri 184 1  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( X  e.  A  /\  Y  e.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763   (/)c0 3450   ifcif 3561   {cpr 3623   <.cop 3625    Fn wfn 5253   ` cfv 5258   1oc1o 6467   2oc2o 6468   X_cixp 6757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1o 6474  df-2o 6475  df-er 6592  df-ixp 6758  df-en 6800  df-fin 6802
This theorem is referenced by:  xpscf  12990  xpsff1o  12992
  Copyright terms: Public domain W3C validator