ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfrnel2 Unicode version

Theorem xpsfrnel2 12929
Description: Elementhood in the target space of the function  F appearing in xpsval 12935. (Contributed by Mario Carneiro, 15-Aug-2015.)
Assertion
Ref Expression
xpsfrnel2  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( X  e.  A  /\  Y  e.  B
) )
Distinct variable groups:    A, k    B, k    k, X    k, Y

Proof of Theorem xpsfrnel2
StepHypRef Expression
1 xpsfrnel 12927 . 2  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( { <. (/) ,  X >. ,  <. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B ) )
2 fnpr2ob 12923 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  <->  {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o )
32biimpri 133 . . . 4  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  ->  ( X  e.  _V  /\  Y  e.  _V ) )
433ad2ant1 1020 . . 3  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  -> 
( X  e.  _V  /\  Y  e.  _V )
)
5 elex 2771 . . . 4  |-  ( X  e.  A  ->  X  e.  _V )
6 elex 2771 . . . 4  |-  ( Y  e.  B  ->  Y  e.  _V )
75, 6anim12i 338 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X  e.  _V  /\  Y  e.  _V )
)
8 3anass 984 . . . 4  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  (/) )  e.  A  /\  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 1o )  e.  B ) ) )
9 fnpr2o 12922 . . . . . 6  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o )
109biantrurd 305 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  (/) )  e.  A  /\  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 1o )  e.  B ) ) ) )
11 fvpr0o 12924 . . . . . . 7  |-  ( X  e.  _V  ->  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  =  X )
1211eleq1d 2262 . . . . . 6  |-  ( X  e.  _V  ->  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  (/) )  e.  A  <->  X  e.  A
) )
13 fvpr1o 12925 . . . . . . 7  |-  ( Y  e.  _V  ->  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 1o )  =  Y )
1413eleq1d 2262 . . . . . 6  |-  ( Y  e.  _V  ->  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B  <->  Y  e.  B ) )
1512, 14bi2anan9 606 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  <->  ( X  e.  A  /\  Y  e.  B ) ) )
1610, 15bitr3d 190 . . . 4  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( { <. (/)
,  X >. ,  <. 1o ,  Y >. }  Fn  2o  /\  ( ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B ) )  <-> 
( X  e.  A  /\  Y  e.  B
) ) )
178, 16bitrid 192 . . 3  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( { <. (/)
,  X >. ,  <. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/)
,  X >. ,  <. 1o ,  Y >. } `  (/) )  e.  A  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 1o )  e.  B )  <->  ( X  e.  A  /\  Y  e.  B ) ) )
184, 7, 17pm5.21nii 705 . 2  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  <->  ( X  e.  A  /\  Y  e.  B ) )
191, 18bitri 184 1  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( X  e.  A  /\  Y  e.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760   (/)c0 3446   ifcif 3557   {cpr 3619   <.cop 3621    Fn wfn 5249   ` cfv 5254   1oc1o 6462   2oc2o 6463   X_cixp 6752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-2o 6470  df-er 6587  df-ixp 6753  df-en 6795  df-fin 6797
This theorem is referenced by:  xpscf  12930  xpsff1o  12932
  Copyright terms: Public domain W3C validator