ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfrnel2 Unicode version

Theorem xpsfrnel2 13211
Description: Elementhood in the target space of the function  F appearing in xpsval 13217. (Contributed by Mario Carneiro, 15-Aug-2015.)
Assertion
Ref Expression
xpsfrnel2  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( X  e.  A  /\  Y  e.  B
) )
Distinct variable groups:    A, k    B, k    k, X    k, Y

Proof of Theorem xpsfrnel2
StepHypRef Expression
1 xpsfrnel 13209 . 2  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( { <. (/) ,  X >. ,  <. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B ) )
2 fnpr2ob 13205 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  <->  {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o )
32biimpri 133 . . . 4  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  ->  ( X  e.  _V  /\  Y  e.  _V ) )
433ad2ant1 1021 . . 3  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  -> 
( X  e.  _V  /\  Y  e.  _V )
)
5 elex 2783 . . . 4  |-  ( X  e.  A  ->  X  e.  _V )
6 elex 2783 . . . 4  |-  ( Y  e.  B  ->  Y  e.  _V )
75, 6anim12i 338 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X  e.  _V  /\  Y  e.  _V )
)
8 3anass 985 . . . 4  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  (/) )  e.  A  /\  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 1o )  e.  B ) ) )
9 fnpr2o 13204 . . . . . 6  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o )
109biantrurd 305 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  (/) )  e.  A  /\  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 1o )  e.  B ) ) ) )
11 fvpr0o 13206 . . . . . . 7  |-  ( X  e.  _V  ->  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  =  X )
1211eleq1d 2274 . . . . . 6  |-  ( X  e.  _V  ->  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  (/) )  e.  A  <->  X  e.  A
) )
13 fvpr1o 13207 . . . . . . 7  |-  ( Y  e.  _V  ->  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 1o )  =  Y )
1413eleq1d 2274 . . . . . 6  |-  ( Y  e.  _V  ->  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B  <->  Y  e.  B ) )
1512, 14bi2anan9 606 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  <->  ( X  e.  A  /\  Y  e.  B ) ) )
1610, 15bitr3d 190 . . . 4  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( { <. (/)
,  X >. ,  <. 1o ,  Y >. }  Fn  2o  /\  ( ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B ) )  <-> 
( X  e.  A  /\  Y  e.  B
) ) )
178, 16bitrid 192 . . 3  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( { <. (/)
,  X >. ,  <. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/)
,  X >. ,  <. 1o ,  Y >. } `  (/) )  e.  A  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 1o )  e.  B )  <->  ( X  e.  A  /\  Y  e.  B ) ) )
184, 7, 17pm5.21nii 706 . 2  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 (/) )  e.  A  /\  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  1o )  e.  B )  <->  ( X  e.  A  /\  Y  e.  B ) )
191, 18bitri 184 1  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( X  e.  A  /\  Y  e.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772   (/)c0 3460   ifcif 3571   {cpr 3634   <.cop 3636    Fn wfn 5267   ` cfv 5272   1oc1o 6497   2oc2o 6498   X_cixp 6787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1o 6504  df-2o 6505  df-er 6622  df-ixp 6788  df-en 6830  df-fin 6832
This theorem is referenced by:  xpscf  13212  xpsff1o  13214
  Copyright terms: Public domain W3C validator