ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfeq Unicode version

Theorem xpsfeq 12818
Description: A function on  2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
xpsfeq  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  =  G )

Proof of Theorem xpsfeq
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 0lt2o 6465 . . . 4  |-  (/)  e.  2o
2 funfvex 5551 . . . . 5  |-  ( ( Fun  G  /\  (/)  e.  dom  G )  ->  ( G `  (/) )  e.  _V )
32funfni 5335 . . . 4  |-  ( ( G  Fn  2o  /\  (/) 
e.  2o )  -> 
( G `  (/) )  e. 
_V )
41, 3mpan2 425 . . 3  |-  ( G  Fn  2o  ->  ( G `  (/) )  e. 
_V )
5 1lt2o 6466 . . . 4  |-  1o  e.  2o
6 funfvex 5551 . . . . 5  |-  ( ( Fun  G  /\  1o  e.  dom  G )  -> 
( G `  1o )  e.  _V )
76funfni 5335 . . . 4  |-  ( ( G  Fn  2o  /\  1o  e.  2o )  -> 
( G `  1o )  e.  _V )
85, 7mpan2 425 . . 3  |-  ( G  Fn  2o  ->  ( G `  1o )  e.  _V )
9 fnpr2o 12812 . . 3  |-  ( ( ( G `  (/) )  e. 
_V  /\  ( G `  1o )  e.  _V )  ->  { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. }  Fn  2o )
104, 8, 9syl2anc 411 . 2  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  Fn  2o )
11 id 19 . 2  |-  ( G  Fn  2o  ->  G  Fn  2o )
12 elpri 3630 . . . 4  |-  ( k  e.  { (/) ,  1o }  ->  ( k  =  (/)  \/  k  =  1o ) )
13 df2o3 6454 . . . 4  |-  2o  =  { (/) ,  1o }
1412, 13eleq2s 2284 . . 3  |-  ( k  e.  2o  ->  (
k  =  (/)  \/  k  =  1o ) )
15 fvpr0o 12814 . . . . . . 7  |-  ( ( G `  (/) )  e. 
_V  ->  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  (/) )  =  ( G `  (/) ) )
164, 15syl 14 . . . . . 6  |-  ( G  Fn  2o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  (/) )  =  ( G `  (/) ) )
1716adantr 276 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  (/) )  =  ( G `  (/) ) )
18 fveq2 5534 . . . . . 6  |-  ( k  =  (/)  ->  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  (/) ) )
1918adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  (/) ) )
20 fveq2 5534 . . . . . 6  |-  ( k  =  (/)  ->  ( G `
 k )  =  ( G `  (/) ) )
2120adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( G `  k
)  =  ( G `
 (/) ) )
2217, 19, 213eqtr4d 2232 . . . 4  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
23 fvpr1o 12815 . . . . . . 7  |-  ( ( G `  1o )  e.  _V  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o )  =  ( G `  1o ) )
248, 23syl 14 . . . . . 6  |-  ( G  Fn  2o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o )  =  ( G `  1o ) )
2524adantr 276 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  1o )  =  ( G `  1o ) )
26 fveq2 5534 . . . . . 6  |-  ( k  =  1o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o ) )
2726adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  1o ) )
28 fveq2 5534 . . . . . 6  |-  ( k  =  1o  ->  ( G `  k )  =  ( G `  1o ) )
2928adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( G `  k
)  =  ( G `
 1o ) )
3025, 27, 293eqtr4d 2232 . . . 4  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
3122, 30jaodan 798 . . 3  |-  ( ( G  Fn  2o  /\  ( k  =  (/)  \/  k  =  1o ) )  ->  ( { <.
(/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( G `
 k ) )
3214, 31sylan2 286 . 2  |-  ( ( G  Fn  2o  /\  k  e.  2o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
3310, 11, 32eqfnfvd 5636 1  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2160   _Vcvv 2752   (/)c0 3437   {cpr 3608   <.cop 3610    Fn wfn 5230   ` cfv 5235   1oc1o 6433   2oc2o 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-1o 6440  df-2o 6441
This theorem is referenced by:  xpsff1o  12822
  Copyright terms: Public domain W3C validator