ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfeq Unicode version

Theorem xpsfeq 13177
Description: A function on  2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
xpsfeq  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  =  G )

Proof of Theorem xpsfeq
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 0lt2o 6527 . . . 4  |-  (/)  e.  2o
2 funfvex 5593 . . . . 5  |-  ( ( Fun  G  /\  (/)  e.  dom  G )  ->  ( G `  (/) )  e.  _V )
32funfni 5376 . . . 4  |-  ( ( G  Fn  2o  /\  (/) 
e.  2o )  -> 
( G `  (/) )  e. 
_V )
41, 3mpan2 425 . . 3  |-  ( G  Fn  2o  ->  ( G `  (/) )  e. 
_V )
5 1lt2o 6528 . . . 4  |-  1o  e.  2o
6 funfvex 5593 . . . . 5  |-  ( ( Fun  G  /\  1o  e.  dom  G )  -> 
( G `  1o )  e.  _V )
76funfni 5376 . . . 4  |-  ( ( G  Fn  2o  /\  1o  e.  2o )  -> 
( G `  1o )  e.  _V )
85, 7mpan2 425 . . 3  |-  ( G  Fn  2o  ->  ( G `  1o )  e.  _V )
9 fnpr2o 13171 . . 3  |-  ( ( ( G `  (/) )  e. 
_V  /\  ( G `  1o )  e.  _V )  ->  { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. }  Fn  2o )
104, 8, 9syl2anc 411 . 2  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  Fn  2o )
11 id 19 . 2  |-  ( G  Fn  2o  ->  G  Fn  2o )
12 elpri 3656 . . . 4  |-  ( k  e.  { (/) ,  1o }  ->  ( k  =  (/)  \/  k  =  1o ) )
13 df2o3 6516 . . . 4  |-  2o  =  { (/) ,  1o }
1412, 13eleq2s 2300 . . 3  |-  ( k  e.  2o  ->  (
k  =  (/)  \/  k  =  1o ) )
15 fvpr0o 13173 . . . . . . 7  |-  ( ( G `  (/) )  e. 
_V  ->  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  (/) )  =  ( G `  (/) ) )
164, 15syl 14 . . . . . 6  |-  ( G  Fn  2o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  (/) )  =  ( G `  (/) ) )
1716adantr 276 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  (/) )  =  ( G `  (/) ) )
18 fveq2 5576 . . . . . 6  |-  ( k  =  (/)  ->  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  (/) ) )
1918adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  (/) ) )
20 fveq2 5576 . . . . . 6  |-  ( k  =  (/)  ->  ( G `
 k )  =  ( G `  (/) ) )
2120adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( G `  k
)  =  ( G `
 (/) ) )
2217, 19, 213eqtr4d 2248 . . . 4  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
23 fvpr1o 13174 . . . . . . 7  |-  ( ( G `  1o )  e.  _V  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o )  =  ( G `  1o ) )
248, 23syl 14 . . . . . 6  |-  ( G  Fn  2o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o )  =  ( G `  1o ) )
2524adantr 276 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  1o )  =  ( G `  1o ) )
26 fveq2 5576 . . . . . 6  |-  ( k  =  1o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o ) )
2726adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  1o ) )
28 fveq2 5576 . . . . . 6  |-  ( k  =  1o  ->  ( G `  k )  =  ( G `  1o ) )
2928adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( G `  k
)  =  ( G `
 1o ) )
3025, 27, 293eqtr4d 2248 . . . 4  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
3122, 30jaodan 799 . . 3  |-  ( ( G  Fn  2o  /\  ( k  =  (/)  \/  k  =  1o ) )  ->  ( { <.
(/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( G `
 k ) )
3214, 31sylan2 286 . 2  |-  ( ( G  Fn  2o  /\  k  e.  2o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
3310, 11, 32eqfnfvd 5680 1  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176   _Vcvv 2772   (/)c0 3460   {cpr 3634   <.cop 3636    Fn wfn 5266   ` cfv 5271   1oc1o 6495   2oc2o 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-1o 6502  df-2o 6503
This theorem is referenced by:  xpsff1o  13181
  Copyright terms: Public domain W3C validator