| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsfeq | Unicode version | ||
| Description: A function on |
| Ref | Expression |
|---|---|
| xpsfeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt2o 6499 |
. . . 4
| |
| 2 | funfvex 5575 |
. . . . 5
| |
| 3 | 2 | funfni 5358 |
. . . 4
|
| 4 | 1, 3 | mpan2 425 |
. . 3
|
| 5 | 1lt2o 6500 |
. . . 4
| |
| 6 | funfvex 5575 |
. . . . 5
| |
| 7 | 6 | funfni 5358 |
. . . 4
|
| 8 | 5, 7 | mpan2 425 |
. . 3
|
| 9 | fnpr2o 12982 |
. . 3
| |
| 10 | 4, 8, 9 | syl2anc 411 |
. 2
|
| 11 | id 19 |
. 2
| |
| 12 | elpri 3645 |
. . . 4
| |
| 13 | df2o3 6488 |
. . . 4
| |
| 14 | 12, 13 | eleq2s 2291 |
. . 3
|
| 15 | fvpr0o 12984 |
. . . . . . 7
| |
| 16 | 4, 15 | syl 14 |
. . . . . 6
|
| 17 | 16 | adantr 276 |
. . . . 5
|
| 18 | fveq2 5558 |
. . . . . 6
| |
| 19 | 18 | adantl 277 |
. . . . 5
|
| 20 | fveq2 5558 |
. . . . . 6
| |
| 21 | 20 | adantl 277 |
. . . . 5
|
| 22 | 17, 19, 21 | 3eqtr4d 2239 |
. . . 4
|
| 23 | fvpr1o 12985 |
. . . . . . 7
| |
| 24 | 8, 23 | syl 14 |
. . . . . 6
|
| 25 | 24 | adantr 276 |
. . . . 5
|
| 26 | fveq2 5558 |
. . . . . 6
| |
| 27 | 26 | adantl 277 |
. . . . 5
|
| 28 | fveq2 5558 |
. . . . . 6
| |
| 29 | 28 | adantl 277 |
. . . . 5
|
| 30 | 25, 27, 29 | 3eqtr4d 2239 |
. . . 4
|
| 31 | 22, 30 | jaodan 798 |
. . 3
|
| 32 | 14, 31 | sylan2 286 |
. 2
|
| 33 | 10, 11, 32 | eqfnfvd 5662 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-1o 6474 df-2o 6475 |
| This theorem is referenced by: xpsff1o 12992 |
| Copyright terms: Public domain | W3C validator |