ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfeq Unicode version

Theorem xpsfeq 13292
Description: A function on  2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
xpsfeq  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  =  G )

Proof of Theorem xpsfeq
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 0lt2o 6550 . . . 4  |-  (/)  e.  2o
2 funfvex 5616 . . . . 5  |-  ( ( Fun  G  /\  (/)  e.  dom  G )  ->  ( G `  (/) )  e.  _V )
32funfni 5395 . . . 4  |-  ( ( G  Fn  2o  /\  (/) 
e.  2o )  -> 
( G `  (/) )  e. 
_V )
41, 3mpan2 425 . . 3  |-  ( G  Fn  2o  ->  ( G `  (/) )  e. 
_V )
5 1lt2o 6551 . . . 4  |-  1o  e.  2o
6 funfvex 5616 . . . . 5  |-  ( ( Fun  G  /\  1o  e.  dom  G )  -> 
( G `  1o )  e.  _V )
76funfni 5395 . . . 4  |-  ( ( G  Fn  2o  /\  1o  e.  2o )  -> 
( G `  1o )  e.  _V )
85, 7mpan2 425 . . 3  |-  ( G  Fn  2o  ->  ( G `  1o )  e.  _V )
9 fnpr2o 13286 . . 3  |-  ( ( ( G `  (/) )  e. 
_V  /\  ( G `  1o )  e.  _V )  ->  { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. }  Fn  2o )
104, 8, 9syl2anc 411 . 2  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  Fn  2o )
11 id 19 . 2  |-  ( G  Fn  2o  ->  G  Fn  2o )
12 elpri 3666 . . . 4  |-  ( k  e.  { (/) ,  1o }  ->  ( k  =  (/)  \/  k  =  1o ) )
13 df2o3 6539 . . . 4  |-  2o  =  { (/) ,  1o }
1412, 13eleq2s 2302 . . 3  |-  ( k  e.  2o  ->  (
k  =  (/)  \/  k  =  1o ) )
15 fvpr0o 13288 . . . . . . 7  |-  ( ( G `  (/) )  e. 
_V  ->  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  (/) )  =  ( G `  (/) ) )
164, 15syl 14 . . . . . 6  |-  ( G  Fn  2o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  (/) )  =  ( G `  (/) ) )
1716adantr 276 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  (/) )  =  ( G `  (/) ) )
18 fveq2 5599 . . . . . 6  |-  ( k  =  (/)  ->  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  (/) ) )
1918adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  (/) ) )
20 fveq2 5599 . . . . . 6  |-  ( k  =  (/)  ->  ( G `
 k )  =  ( G `  (/) ) )
2120adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( G `  k
)  =  ( G `
 (/) ) )
2217, 19, 213eqtr4d 2250 . . . 4  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
23 fvpr1o 13289 . . . . . . 7  |-  ( ( G `  1o )  e.  _V  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o )  =  ( G `  1o ) )
248, 23syl 14 . . . . . 6  |-  ( G  Fn  2o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o )  =  ( G `  1o ) )
2524adantr 276 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  1o )  =  ( G `  1o ) )
26 fveq2 5599 . . . . . 6  |-  ( k  =  1o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o ) )
2726adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  1o ) )
28 fveq2 5599 . . . . . 6  |-  ( k  =  1o  ->  ( G `  k )  =  ( G `  1o ) )
2928adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( G `  k
)  =  ( G `
 1o ) )
3025, 27, 293eqtr4d 2250 . . . 4  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
3122, 30jaodan 799 . . 3  |-  ( ( G  Fn  2o  /\  ( k  =  (/)  \/  k  =  1o ) )  ->  ( { <.
(/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( G `
 k ) )
3214, 31sylan2 286 . 2  |-  ( ( G  Fn  2o  /\  k  e.  2o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
3310, 11, 32eqfnfvd 5703 1  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   _Vcvv 2776   (/)c0 3468   {cpr 3644   <.cop 3646    Fn wfn 5285   ` cfv 5290   1oc1o 6518   2oc2o 6519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-1o 6525  df-2o 6526
This theorem is referenced by:  xpsff1o  13296
  Copyright terms: Public domain W3C validator