ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfeq Unicode version

Theorem xpsfeq 13378
Description: A function on  2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
xpsfeq  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  =  G )

Proof of Theorem xpsfeq
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 0lt2o 6587 . . . 4  |-  (/)  e.  2o
2 funfvex 5644 . . . . 5  |-  ( ( Fun  G  /\  (/)  e.  dom  G )  ->  ( G `  (/) )  e.  _V )
32funfni 5423 . . . 4  |-  ( ( G  Fn  2o  /\  (/) 
e.  2o )  -> 
( G `  (/) )  e. 
_V )
41, 3mpan2 425 . . 3  |-  ( G  Fn  2o  ->  ( G `  (/) )  e. 
_V )
5 1lt2o 6588 . . . 4  |-  1o  e.  2o
6 funfvex 5644 . . . . 5  |-  ( ( Fun  G  /\  1o  e.  dom  G )  -> 
( G `  1o )  e.  _V )
76funfni 5423 . . . 4  |-  ( ( G  Fn  2o  /\  1o  e.  2o )  -> 
( G `  1o )  e.  _V )
85, 7mpan2 425 . . 3  |-  ( G  Fn  2o  ->  ( G `  1o )  e.  _V )
9 fnpr2o 13372 . . 3  |-  ( ( ( G `  (/) )  e. 
_V  /\  ( G `  1o )  e.  _V )  ->  { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. }  Fn  2o )
104, 8, 9syl2anc 411 . 2  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  Fn  2o )
11 id 19 . 2  |-  ( G  Fn  2o  ->  G  Fn  2o )
12 elpri 3689 . . . 4  |-  ( k  e.  { (/) ,  1o }  ->  ( k  =  (/)  \/  k  =  1o ) )
13 df2o3 6576 . . . 4  |-  2o  =  { (/) ,  1o }
1412, 13eleq2s 2324 . . 3  |-  ( k  e.  2o  ->  (
k  =  (/)  \/  k  =  1o ) )
15 fvpr0o 13374 . . . . . . 7  |-  ( ( G `  (/) )  e. 
_V  ->  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  (/) )  =  ( G `  (/) ) )
164, 15syl 14 . . . . . 6  |-  ( G  Fn  2o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  (/) )  =  ( G `  (/) ) )
1716adantr 276 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  (/) )  =  ( G `  (/) ) )
18 fveq2 5627 . . . . . 6  |-  ( k  =  (/)  ->  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  (/) ) )
1918adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  (/) ) )
20 fveq2 5627 . . . . . 6  |-  ( k  =  (/)  ->  ( G `
 k )  =  ( G `  (/) ) )
2120adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( G `  k
)  =  ( G `
 (/) ) )
2217, 19, 213eqtr4d 2272 . . . 4  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
23 fvpr1o 13375 . . . . . . 7  |-  ( ( G `  1o )  e.  _V  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o )  =  ( G `  1o ) )
248, 23syl 14 . . . . . 6  |-  ( G  Fn  2o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o )  =  ( G `  1o ) )
2524adantr 276 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  1o )  =  ( G `  1o ) )
26 fveq2 5627 . . . . . 6  |-  ( k  =  1o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o ) )
2726adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  1o ) )
28 fveq2 5627 . . . . . 6  |-  ( k  =  1o  ->  ( G `  k )  =  ( G `  1o ) )
2928adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( G `  k
)  =  ( G `
 1o ) )
3025, 27, 293eqtr4d 2272 . . . 4  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
3122, 30jaodan 802 . . 3  |-  ( ( G  Fn  2o  /\  ( k  =  (/)  \/  k  =  1o ) )  ->  ( { <.
(/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( G `
 k ) )
3214, 31sylan2 286 . 2  |-  ( ( G  Fn  2o  /\  k  e.  2o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
3310, 11, 32eqfnfvd 5735 1  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   _Vcvv 2799   (/)c0 3491   {cpr 3667   <.cop 3669    Fn wfn 5313   ` cfv 5318   1oc1o 6555   2oc2o 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-1o 6562  df-2o 6563
This theorem is referenced by:  xpsff1o  13382
  Copyright terms: Public domain W3C validator