ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfeq Unicode version

Theorem xpsfeq 13047
Description: A function on  2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
xpsfeq  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  =  G )

Proof of Theorem xpsfeq
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 0lt2o 6508 . . . 4  |-  (/)  e.  2o
2 funfvex 5578 . . . . 5  |-  ( ( Fun  G  /\  (/)  e.  dom  G )  ->  ( G `  (/) )  e.  _V )
32funfni 5361 . . . 4  |-  ( ( G  Fn  2o  /\  (/) 
e.  2o )  -> 
( G `  (/) )  e. 
_V )
41, 3mpan2 425 . . 3  |-  ( G  Fn  2o  ->  ( G `  (/) )  e. 
_V )
5 1lt2o 6509 . . . 4  |-  1o  e.  2o
6 funfvex 5578 . . . . 5  |-  ( ( Fun  G  /\  1o  e.  dom  G )  -> 
( G `  1o )  e.  _V )
76funfni 5361 . . . 4  |-  ( ( G  Fn  2o  /\  1o  e.  2o )  -> 
( G `  1o )  e.  _V )
85, 7mpan2 425 . . 3  |-  ( G  Fn  2o  ->  ( G `  1o )  e.  _V )
9 fnpr2o 13041 . . 3  |-  ( ( ( G `  (/) )  e. 
_V  /\  ( G `  1o )  e.  _V )  ->  { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. }  Fn  2o )
104, 8, 9syl2anc 411 . 2  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  Fn  2o )
11 id 19 . 2  |-  ( G  Fn  2o  ->  G  Fn  2o )
12 elpri 3646 . . . 4  |-  ( k  e.  { (/) ,  1o }  ->  ( k  =  (/)  \/  k  =  1o ) )
13 df2o3 6497 . . . 4  |-  2o  =  { (/) ,  1o }
1412, 13eleq2s 2291 . . 3  |-  ( k  e.  2o  ->  (
k  =  (/)  \/  k  =  1o ) )
15 fvpr0o 13043 . . . . . . 7  |-  ( ( G `  (/) )  e. 
_V  ->  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  (/) )  =  ( G `  (/) ) )
164, 15syl 14 . . . . . 6  |-  ( G  Fn  2o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  (/) )  =  ( G `  (/) ) )
1716adantr 276 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  (/) )  =  ( G `  (/) ) )
18 fveq2 5561 . . . . . 6  |-  ( k  =  (/)  ->  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  (/) ) )
1918adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  (/) ) )
20 fveq2 5561 . . . . . 6  |-  ( k  =  (/)  ->  ( G `
 k )  =  ( G `  (/) ) )
2120adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( G `  k
)  =  ( G `
 (/) ) )
2217, 19, 213eqtr4d 2239 . . . 4  |-  ( ( G  Fn  2o  /\  k  =  (/) )  -> 
( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
23 fvpr1o 13044 . . . . . . 7  |-  ( ( G `  1o )  e.  _V  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o )  =  ( G `  1o ) )
248, 23syl 14 . . . . . 6  |-  ( G  Fn  2o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o )  =  ( G `  1o ) )
2524adantr 276 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  1o )  =  ( G `  1o ) )
26 fveq2 5561 . . . . . 6  |-  ( k  =  1o  ->  ( { <. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  1o ) )
2726adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. } `  1o ) )
28 fveq2 5561 . . . . . 6  |-  ( k  =  1o  ->  ( G `  k )  =  ( G `  1o ) )
2928adantl 277 . . . . 5  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( G `  k
)  =  ( G `
 1o ) )
3025, 27, 293eqtr4d 2239 . . . 4  |-  ( ( G  Fn  2o  /\  k  =  1o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
3122, 30jaodan 798 . . 3  |-  ( ( G  Fn  2o  /\  ( k  =  (/)  \/  k  =  1o ) )  ->  ( { <.
(/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o ) >. } `  k
)  =  ( G `
 k ) )
3214, 31sylan2 286 . 2  |-  ( ( G  Fn  2o  /\  k  e.  2o )  ->  ( { <. (/) ,  ( G `  (/) ) >. ,  <. 1o ,  ( G `  1o )
>. } `  k )  =  ( G `  k ) )
3310, 11, 32eqfnfvd 5665 1  |-  ( G  Fn  2o  ->  { <. (/)
,  ( G `  (/) ) >. ,  <. 1o , 
( G `  1o ) >. }  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   _Vcvv 2763   (/)c0 3451   {cpr 3624   <.cop 3626    Fn wfn 5254   ` cfv 5259   1oc1o 6476   2oc2o 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-1o 6483  df-2o 6484
This theorem is referenced by:  xpsff1o  13051
  Copyright terms: Public domain W3C validator