| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1onn | Unicode version | ||
| Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1onn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6502 |
. 2
| |
| 2 | peano1 4642 |
. . 3
| |
| 3 | peano2 4643 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 df-1o 6502 |
| This theorem is referenced by: 2onn 6607 nnm2 6612 nnaordex 6614 snfig 6906 snnen2og 6956 1nen2 6958 unfiexmid 7015 en1eqsn 7050 omp1eomlem 7196 fodjum 7248 fodju0 7249 nninfdcinf 7273 nninfwlporlemd 7274 nninfwlporlem 7275 en2eleq 7303 en2other2 7304 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 1pi 7428 1lt2pi 7453 archnqq 7530 nq0m0r 7569 nq02m 7578 prarloclemlt 7606 prarloclemlo 7607 1tonninf 10586 hash2 10957 fnpr2o 13171 fvpr1o 13174 012of 15934 2omap 15936 pwle2 15939 peano3nninf 15948 nninfall 15950 nninfsellemdc 15951 nninfsellemeq 15955 nninfsellemeqinf 15957 nninffeq 15961 sbthom 15969 isomninnlem 15973 iswomninnlem 15992 ismkvnnlem 15995 |
| Copyright terms: Public domain | W3C validator |