| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1onn | Unicode version | ||
| Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1onn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6504 |
. 2
| |
| 2 | peano1 4643 |
. . 3
| |
| 3 | peano2 4644 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4419 df-iom 4640 df-1o 6504 |
| This theorem is referenced by: 2onn 6609 nnm2 6614 nnaordex 6616 snfig 6908 snnen2og 6958 1nen2 6960 unfiexmid 7017 en1eqsn 7052 omp1eomlem 7198 fodjum 7250 fodju0 7251 nninfdcinf 7275 nninfwlporlemd 7276 nninfwlporlem 7277 en2eleq 7305 en2other2 7306 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 1pi 7430 1lt2pi 7455 archnqq 7532 nq0m0r 7571 nq02m 7580 prarloclemlt 7608 prarloclemlo 7609 1tonninf 10588 hash2 10959 fnpr2o 13204 fvpr1o 13207 012of 15967 2omap 15969 pwle2 15972 peano3nninf 15981 nninfall 15983 nninfsellemdc 15984 nninfsellemeq 15988 nninfsellemeqinf 15990 nninffeq 15994 sbthom 16002 isomninnlem 16006 iswomninnlem 16025 ismkvnnlem 16028 |
| Copyright terms: Public domain | W3C validator |