Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1onn | Unicode version |
Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1onn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6360 | . 2 | |
2 | peano1 4552 | . . 3 | |
3 | peano2 4553 | . . 3 | |
4 | 2, 3 | ax-mp 5 | . 2 |
5 | 1, 4 | eqeltri 2230 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 c0 3394 csuc 4325 com 4548 c1o 6353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-suc 4331 df-iom 4549 df-1o 6360 |
This theorem is referenced by: 2onn 6465 nnm2 6469 nnaordex 6471 snfig 6756 snnen2og 6801 1nen2 6803 unfiexmid 6859 en1eqsn 6889 omp1eomlem 7032 fodjum 7083 fodju0 7084 en2eleq 7124 en2other2 7125 exmidfodomrlemr 7131 exmidfodomrlemrALT 7132 1pi 7229 1lt2pi 7254 archnqq 7331 nq0m0r 7370 nq02m 7379 prarloclemlt 7407 prarloclemlo 7408 1tonninf 10332 hash2 10679 012of 13538 pwle2 13541 peano3nninf 13550 nninfall 13552 nninfsellemdc 13553 nninfsellemeq 13557 nninfsellemeqinf 13559 nninffeq 13563 sbthom 13568 isomninnlem 13572 iswomninnlem 13591 ismkvnnlem 13594 |
Copyright terms: Public domain | W3C validator |