![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1onn | Unicode version |
Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1onn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6471 |
. 2
![]() ![]() ![]() ![]() ![]() | |
2 | peano1 4627 |
. . 3
![]() ![]() ![]() ![]() | |
3 | peano2 4628 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqeltri 2266 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-suc 4403 df-iom 4624 df-1o 6471 |
This theorem is referenced by: 2onn 6576 nnm2 6581 nnaordex 6583 snfig 6870 snnen2og 6917 1nen2 6919 unfiexmid 6976 en1eqsn 7009 omp1eomlem 7155 fodjum 7207 fodju0 7208 nninfdcinf 7232 nninfwlporlemd 7233 nninfwlporlem 7234 en2eleq 7257 en2other2 7258 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 1pi 7377 1lt2pi 7402 archnqq 7479 nq0m0r 7518 nq02m 7527 prarloclemlt 7555 prarloclemlo 7556 1tonninf 10515 hash2 10886 fnpr2o 12925 fvpr1o 12928 012of 15556 pwle2 15559 peano3nninf 15567 nninfall 15569 nninfsellemdc 15570 nninfsellemeq 15574 nninfsellemeqinf 15576 nninffeq 15580 sbthom 15586 isomninnlem 15590 iswomninnlem 15609 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |