![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1onn | Unicode version |
Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1onn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6469 |
. 2
![]() ![]() ![]() ![]() ![]() | |
2 | peano1 4626 |
. . 3
![]() ![]() ![]() ![]() | |
3 | peano2 4627 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqeltri 2266 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 df-1o 6469 |
This theorem is referenced by: 2onn 6574 nnm2 6579 nnaordex 6581 snfig 6868 snnen2og 6915 1nen2 6917 unfiexmid 6974 en1eqsn 7007 omp1eomlem 7153 fodjum 7205 fodju0 7206 nninfdcinf 7230 nninfwlporlemd 7231 nninfwlporlem 7232 en2eleq 7255 en2other2 7256 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 1pi 7375 1lt2pi 7400 archnqq 7477 nq0m0r 7516 nq02m 7525 prarloclemlt 7553 prarloclemlo 7554 1tonninf 10512 hash2 10883 fnpr2o 12922 fvpr1o 12925 012of 15486 pwle2 15489 peano3nninf 15497 nninfall 15499 nninfsellemdc 15500 nninfsellemeq 15504 nninfsellemeqinf 15506 nninffeq 15510 sbthom 15516 isomninnlem 15520 iswomninnlem 15539 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |