ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funvtxdm2vald Unicode version

Theorem funvtxdm2vald 15570
Description: The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
Hypotheses
Ref Expression
funvtxdm2val.a  |-  A  e. 
_V
funvtxdm2val.b  |-  B  e. 
_V
funvtxdm2vald.g  |-  ( ph  ->  G  e.  X )
funvtxdm2vald.fun  |-  ( ph  ->  Fun  ( G  \  { (/) } ) )
funvtxdm2vald.ne  |-  ( ph  ->  A  =/=  B )
funvtxdm2vald.dm  |-  ( ph  ->  { A ,  B }  C_  dom  G )
Assertion
Ref Expression
funvtxdm2vald  |-  ( ph  ->  (Vtx `  G )  =  ( Base `  G
) )

Proof of Theorem funvtxdm2vald
StepHypRef Expression
1 funvtxdm2vald.g . . 3  |-  ( ph  ->  G  e.  X )
2 vtxvalg 15557 . . 3  |-  ( G  e.  X  ->  (Vtx `  G )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) ) )
31, 2syl 14 . 2  |-  ( ph  ->  (Vtx `  G )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G ) ,  (
Base `  G )
) )
4 funvtxdm2vald.fun . . . 4  |-  ( ph  ->  Fun  ( G  \  { (/) } ) )
5 funvtxdm2vald.ne . . . 4  |-  ( ph  ->  A  =/=  B )
6 funvtxdm2vald.dm . . . 4  |-  ( ph  ->  { A ,  B }  C_  dom  G )
7 funvtxdm2val.a . . . . 5  |-  A  e. 
_V
8 funvtxdm2val.b . . . . 5  |-  B  e. 
_V
97, 8fun2dmnop0 10990 . . . 4  |-  ( ( Fun  ( G  \  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_ 
dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
104, 5, 6, 9syl3anc 1249 . . 3  |-  ( ph  ->  -.  G  e.  ( _V  X.  _V )
)
1110iffalsed 3580 . 2  |-  ( ph  ->  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G ) ,  (
Base `  G )
)  =  ( Base `  G ) )
123, 11eqtrd 2237 1  |-  ( ph  ->  (Vtx `  G )  =  ( Base `  G
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1372    e. wcel 2175    =/= wne 2375   _Vcvv 2771    \ cdif 3162    C_ wss 3165   (/)c0 3459   ifcif 3570   {csn 3632   {cpr 3633    X. cxp 4672   dom cdm 4674   Fun wfun 5264   ` cfv 5270   1stc1st 6223   Basecbs 12774  Vtxcvtx 15553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1st 6225  df-1o 6501  df-2o 6502  df-en 6827  df-dom 6828  df-inn 9036  df-ndx 12777  df-slot 12778  df-base 12780  df-vtx 15555
This theorem is referenced by:  funvtxval0d  15572  funvtxvalg  15575
  Copyright terms: Public domain W3C validator