ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ge0p1rp Unicode version

Theorem ge0p1rp 9881
Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
ge0p1rp  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  +  1 )  e.  RR+ )

Proof of Theorem ge0p1rp
StepHypRef Expression
1 peano2re 8282 . . 3  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
21adantr 276 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  +  1 )  e.  RR )
3 0red 8147 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  e.  RR )
4 simpl 109 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
5 simpr 110 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  <_  A )
6 ltp1 8991 . . . 4  |-  ( A  e.  RR  ->  A  <  ( A  +  1 ) )
76adantr 276 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  <  ( A  + 
1 ) )
83, 4, 2, 5, 7lelttrd 8271 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  <  ( A  +  1 ) )
9 elrp 9851 . 2  |-  ( ( A  +  1 )  e.  RR+  <->  ( ( A  +  1 )  e.  RR  /\  0  < 
( A  +  1 ) ) )
102, 8, 9sylanbrc 417 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  +  1 )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182   RR+crp 9849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltwlin 8112  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-iota 5278  df-fv 5326  df-ov 6004  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-rp 9850
This theorem is referenced by:  ge0p1rpd  9923
  Copyright terms: Public domain W3C validator