ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltp1 Unicode version

Theorem ltp1 8368
Description: A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
Assertion
Ref Expression
ltp1  |-  ( A  e.  RR  ->  A  <  ( A  +  1 ) )

Proof of Theorem ltp1
StepHypRef Expression
1 1re 7550 . 2  |-  1  e.  RR
2 0lt1 7673 . . 3  |-  0  <  1
3 ltaddpos 7993 . . 3  |-  ( ( 1  e.  RR  /\  A  e.  RR )  ->  ( 0  <  1  <->  A  <  ( A  + 
1 ) ) )
42, 3mpbii 147 . 2  |-  ( ( 1  e.  RR  /\  A  e.  RR )  ->  A  <  ( A  +  1 ) )
51, 4mpan 416 1  |-  ( A  e.  RR  ->  A  <  ( A  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1439   class class class wbr 3853  (class class class)co 5668   RRcr 7412   0cc0 7413   1c1 7414    + caddc 7416    < clt 7585
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-i2m1 7513  ax-0lt1 7514  ax-0id 7516  ax-rnegex 7517  ax-pre-ltadd 7524
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2624  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-xp 4460  df-iota 4995  df-fv 5038  df-ov 5671  df-pnf 7587  df-mnf 7588  df-ltxr 7590
This theorem is referenced by:  lep1  8369  letrp1  8372  recp1lt1  8423  ledivp1  8427  ltp1i  8429  ltp1d  8454  uzind  8920  ge0p1rp  9228  qbtwnxr  9732
  Copyright terms: Public domain W3C validator