![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ge0p1rp | GIF version |
Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
ge0p1rp | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2re 8096 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ) |
3 | 0red 7961 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ ℝ) | |
4 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
5 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴) | |
6 | ltp1 8804 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
7 | 6 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 < (𝐴 + 1)) |
8 | 3, 4, 2, 5, 7 | lelttrd 8085 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 < (𝐴 + 1)) |
9 | elrp 9658 | . 2 ⊢ ((𝐴 + 1) ∈ ℝ+ ↔ ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1))) | |
10 | 2, 8, 9 | sylanbrc 417 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5878 ℝcr 7813 0cc0 7814 1c1 7815 + caddc 7817 < clt 7995 ≤ cle 7996 ℝ+crp 9656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltwlin 7927 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-xp 4634 df-cnv 4636 df-iota 5180 df-fv 5226 df-ov 5881 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-rp 9657 |
This theorem is referenced by: ge0p1rpd 9730 |
Copyright terms: Public domain | W3C validator |