![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpidssd | GIF version |
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.) |
Ref | Expression |
---|---|
grpidssd.m | ⊢ (𝜑 → 𝑀 ∈ Grp) |
grpidssd.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
grpidssd.b | ⊢ 𝐵 = (Base‘𝑆) |
grpidssd.c | ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) |
grpidssd.o | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
Ref | Expression |
---|---|
grpidssd | ⊢ (𝜑 → (0g‘𝑀) = (0g‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidssd.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
2 | grpidssd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
3 | eqid 2193 | . . . . . . 7 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
4 | 2, 3 | grpidcl 13101 | . . . . . 6 ⊢ (𝑆 ∈ Grp → (0g‘𝑆) ∈ 𝐵) |
5 | 1, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → (0g‘𝑆) ∈ 𝐵) |
6 | grpidssd.o | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) | |
7 | oveq1 5925 | . . . . . . 7 ⊢ (𝑥 = (0g‘𝑆) → (𝑥(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑀)𝑦)) | |
8 | oveq1 5925 | . . . . . . 7 ⊢ (𝑥 = (0g‘𝑆) → (𝑥(+g‘𝑆)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦)) | |
9 | 7, 8 | eqeq12d 2208 | . . . . . 6 ⊢ (𝑥 = (0g‘𝑆) → ((𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦) ↔ ((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦))) |
10 | oveq2 5926 | . . . . . . 7 ⊢ (𝑦 = (0g‘𝑆) → ((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆))) | |
11 | oveq2 5926 | . . . . . . 7 ⊢ (𝑦 = (0g‘𝑆) → ((0g‘𝑆)(+g‘𝑆)𝑦) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) | |
12 | 10, 11 | eqeq12d 2208 | . . . . . 6 ⊢ (𝑦 = (0g‘𝑆) → (((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦) ↔ ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)))) |
13 | 9, 12 | rspc2va 2878 | . . . . 5 ⊢ ((((0g‘𝑆) ∈ 𝐵 ∧ (0g‘𝑆) ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) |
14 | 5, 5, 6, 13 | syl21anc 1248 | . . . 4 ⊢ (𝜑 → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) |
15 | eqid 2193 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
16 | 2, 15, 3 | grplid 13103 | . . . . 5 ⊢ ((𝑆 ∈ Grp ∧ (0g‘𝑆) ∈ 𝐵) → ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)) = (0g‘𝑆)) |
17 | 1, 4, 16 | syl2anc2 412 | . . . 4 ⊢ (𝜑 → ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)) = (0g‘𝑆)) |
18 | 14, 17 | eqtrd 2226 | . . 3 ⊢ (𝜑 → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆)) |
19 | grpidssd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Grp) | |
20 | grpidssd.c | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) | |
21 | 20, 5 | sseldd 3180 | . . . 4 ⊢ (𝜑 → (0g‘𝑆) ∈ (Base‘𝑀)) |
22 | eqid 2193 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
23 | eqid 2193 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
24 | eqid 2193 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
25 | 22, 23, 24 | grpidlcan 13138 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ (0g‘𝑆) ∈ (Base‘𝑀) ∧ (0g‘𝑆) ∈ (Base‘𝑀)) → (((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆) ↔ (0g‘𝑆) = (0g‘𝑀))) |
26 | 19, 21, 21, 25 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆) ↔ (0g‘𝑆) = (0g‘𝑀))) |
27 | 18, 26 | mpbid 147 | . 2 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑀)) |
28 | 27 | eqcomd 2199 | 1 ⊢ (𝜑 → (0g‘𝑀) = (0g‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 0gc0g 12867 Grpcgrp 13072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 |
This theorem is referenced by: grpinvssd 13149 |
Copyright terms: Public domain | W3C validator |