ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidssd GIF version

Theorem grpidssd 13452
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidssd.m (𝜑𝑀 ∈ Grp)
grpidssd.s (𝜑𝑆 ∈ Grp)
grpidssd.b 𝐵 = (Base‘𝑆)
grpidssd.c (𝜑𝐵 ⊆ (Base‘𝑀))
grpidssd.o (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
grpidssd (𝜑 → (0g𝑀) = (0g𝑆))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem grpidssd
StepHypRef Expression
1 grpidssd.s . . . . . 6 (𝜑𝑆 ∈ Grp)
2 grpidssd.b . . . . . . 7 𝐵 = (Base‘𝑆)
3 eqid 2206 . . . . . . 7 (0g𝑆) = (0g𝑆)
42, 3grpidcl 13405 . . . . . 6 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝐵)
51, 4syl 14 . . . . 5 (𝜑 → (0g𝑆) ∈ 𝐵)
6 grpidssd.o . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
7 oveq1 5958 . . . . . . 7 (𝑥 = (0g𝑆) → (𝑥(+g𝑀)𝑦) = ((0g𝑆)(+g𝑀)𝑦))
8 oveq1 5958 . . . . . . 7 (𝑥 = (0g𝑆) → (𝑥(+g𝑆)𝑦) = ((0g𝑆)(+g𝑆)𝑦))
97, 8eqeq12d 2221 . . . . . 6 (𝑥 = (0g𝑆) → ((𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦) ↔ ((0g𝑆)(+g𝑀)𝑦) = ((0g𝑆)(+g𝑆)𝑦)))
10 oveq2 5959 . . . . . . 7 (𝑦 = (0g𝑆) → ((0g𝑆)(+g𝑀)𝑦) = ((0g𝑆)(+g𝑀)(0g𝑆)))
11 oveq2 5959 . . . . . . 7 (𝑦 = (0g𝑆) → ((0g𝑆)(+g𝑆)𝑦) = ((0g𝑆)(+g𝑆)(0g𝑆)))
1210, 11eqeq12d 2221 . . . . . 6 (𝑦 = (0g𝑆) → (((0g𝑆)(+g𝑀)𝑦) = ((0g𝑆)(+g𝑆)𝑦) ↔ ((0g𝑆)(+g𝑀)(0g𝑆)) = ((0g𝑆)(+g𝑆)(0g𝑆))))
139, 12rspc2va 2892 . . . . 5 ((((0g𝑆) ∈ 𝐵 ∧ (0g𝑆) ∈ 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦)) → ((0g𝑆)(+g𝑀)(0g𝑆)) = ((0g𝑆)(+g𝑆)(0g𝑆)))
145, 5, 6, 13syl21anc 1249 . . . 4 (𝜑 → ((0g𝑆)(+g𝑀)(0g𝑆)) = ((0g𝑆)(+g𝑆)(0g𝑆)))
15 eqid 2206 . . . . . 6 (+g𝑆) = (+g𝑆)
162, 15, 3grplid 13407 . . . . 5 ((𝑆 ∈ Grp ∧ (0g𝑆) ∈ 𝐵) → ((0g𝑆)(+g𝑆)(0g𝑆)) = (0g𝑆))
171, 4, 16syl2anc2 412 . . . 4 (𝜑 → ((0g𝑆)(+g𝑆)(0g𝑆)) = (0g𝑆))
1814, 17eqtrd 2239 . . 3 (𝜑 → ((0g𝑆)(+g𝑀)(0g𝑆)) = (0g𝑆))
19 grpidssd.m . . . 4 (𝜑𝑀 ∈ Grp)
20 grpidssd.c . . . . 5 (𝜑𝐵 ⊆ (Base‘𝑀))
2120, 5sseldd 3195 . . . 4 (𝜑 → (0g𝑆) ∈ (Base‘𝑀))
22 eqid 2206 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
23 eqid 2206 . . . . 5 (+g𝑀) = (+g𝑀)
24 eqid 2206 . . . . 5 (0g𝑀) = (0g𝑀)
2522, 23, 24grpidlcan 13442 . . . 4 ((𝑀 ∈ Grp ∧ (0g𝑆) ∈ (Base‘𝑀) ∧ (0g𝑆) ∈ (Base‘𝑀)) → (((0g𝑆)(+g𝑀)(0g𝑆)) = (0g𝑆) ↔ (0g𝑆) = (0g𝑀)))
2619, 21, 21, 25syl3anc 1250 . . 3 (𝜑 → (((0g𝑆)(+g𝑀)(0g𝑆)) = (0g𝑆) ↔ (0g𝑆) = (0g𝑀)))
2718, 26mpbid 147 . 2 (𝜑 → (0g𝑆) = (0g𝑀))
2827eqcomd 2212 1 (𝜑 → (0g𝑀) = (0g𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  wral 2485  wss 3167  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  0gc0g 13132  Grpcgrp 13376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-riota 5906  df-ov 5954  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379
This theorem is referenced by:  grpinvssd  13453
  Copyright terms: Public domain W3C validator