| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidssd | GIF version | ||
| Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| grpidssd.m | ⊢ (𝜑 → 𝑀 ∈ Grp) |
| grpidssd.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
| grpidssd.b | ⊢ 𝐵 = (Base‘𝑆) |
| grpidssd.c | ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) |
| grpidssd.o | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
| Ref | Expression |
|---|---|
| grpidssd | ⊢ (𝜑 → (0g‘𝑀) = (0g‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidssd.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
| 2 | grpidssd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | eqid 2206 | . . . . . . 7 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 4 | 2, 3 | grpidcl 13405 | . . . . . 6 ⊢ (𝑆 ∈ Grp → (0g‘𝑆) ∈ 𝐵) |
| 5 | 1, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → (0g‘𝑆) ∈ 𝐵) |
| 6 | grpidssd.o | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) | |
| 7 | oveq1 5958 | . . . . . . 7 ⊢ (𝑥 = (0g‘𝑆) → (𝑥(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑀)𝑦)) | |
| 8 | oveq1 5958 | . . . . . . 7 ⊢ (𝑥 = (0g‘𝑆) → (𝑥(+g‘𝑆)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦)) | |
| 9 | 7, 8 | eqeq12d 2221 | . . . . . 6 ⊢ (𝑥 = (0g‘𝑆) → ((𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦) ↔ ((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦))) |
| 10 | oveq2 5959 | . . . . . . 7 ⊢ (𝑦 = (0g‘𝑆) → ((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆))) | |
| 11 | oveq2 5959 | . . . . . . 7 ⊢ (𝑦 = (0g‘𝑆) → ((0g‘𝑆)(+g‘𝑆)𝑦) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) | |
| 12 | 10, 11 | eqeq12d 2221 | . . . . . 6 ⊢ (𝑦 = (0g‘𝑆) → (((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦) ↔ ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)))) |
| 13 | 9, 12 | rspc2va 2892 | . . . . 5 ⊢ ((((0g‘𝑆) ∈ 𝐵 ∧ (0g‘𝑆) ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) |
| 14 | 5, 5, 6, 13 | syl21anc 1249 | . . . 4 ⊢ (𝜑 → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) |
| 15 | eqid 2206 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 16 | 2, 15, 3 | grplid 13407 | . . . . 5 ⊢ ((𝑆 ∈ Grp ∧ (0g‘𝑆) ∈ 𝐵) → ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)) = (0g‘𝑆)) |
| 17 | 1, 4, 16 | syl2anc2 412 | . . . 4 ⊢ (𝜑 → ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)) = (0g‘𝑆)) |
| 18 | 14, 17 | eqtrd 2239 | . . 3 ⊢ (𝜑 → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆)) |
| 19 | grpidssd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Grp) | |
| 20 | grpidssd.c | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) | |
| 21 | 20, 5 | sseldd 3195 | . . . 4 ⊢ (𝜑 → (0g‘𝑆) ∈ (Base‘𝑀)) |
| 22 | eqid 2206 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 23 | eqid 2206 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 24 | eqid 2206 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 25 | 22, 23, 24 | grpidlcan 13442 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ (0g‘𝑆) ∈ (Base‘𝑀) ∧ (0g‘𝑆) ∈ (Base‘𝑀)) → (((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆) ↔ (0g‘𝑆) = (0g‘𝑀))) |
| 26 | 19, 21, 21, 25 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆) ↔ (0g‘𝑆) = (0g‘𝑀))) |
| 27 | 18, 26 | mpbid 147 | . 2 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑀)) |
| 28 | 27 | eqcomd 2212 | 1 ⊢ (𝜑 → (0g‘𝑀) = (0g‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3167 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 0gc0g 13132 Grpcgrp 13376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-riota 5906 df-ov 5954 df-inn 9044 df-2 9102 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 |
| This theorem is referenced by: grpinvssd 13453 |
| Copyright terms: Public domain | W3C validator |