| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidssd | GIF version | ||
| Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| grpidssd.m | ⊢ (𝜑 → 𝑀 ∈ Grp) |
| grpidssd.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
| grpidssd.b | ⊢ 𝐵 = (Base‘𝑆) |
| grpidssd.c | ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) |
| grpidssd.o | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
| Ref | Expression |
|---|---|
| grpidssd | ⊢ (𝜑 → (0g‘𝑀) = (0g‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidssd.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
| 2 | grpidssd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | eqid 2209 | . . . . . . 7 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 4 | 2, 3 | grpidcl 13528 | . . . . . 6 ⊢ (𝑆 ∈ Grp → (0g‘𝑆) ∈ 𝐵) |
| 5 | 1, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → (0g‘𝑆) ∈ 𝐵) |
| 6 | grpidssd.o | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) | |
| 7 | oveq1 5981 | . . . . . . 7 ⊢ (𝑥 = (0g‘𝑆) → (𝑥(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑀)𝑦)) | |
| 8 | oveq1 5981 | . . . . . . 7 ⊢ (𝑥 = (0g‘𝑆) → (𝑥(+g‘𝑆)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦)) | |
| 9 | 7, 8 | eqeq12d 2224 | . . . . . 6 ⊢ (𝑥 = (0g‘𝑆) → ((𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦) ↔ ((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦))) |
| 10 | oveq2 5982 | . . . . . . 7 ⊢ (𝑦 = (0g‘𝑆) → ((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆))) | |
| 11 | oveq2 5982 | . . . . . . 7 ⊢ (𝑦 = (0g‘𝑆) → ((0g‘𝑆)(+g‘𝑆)𝑦) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) | |
| 12 | 10, 11 | eqeq12d 2224 | . . . . . 6 ⊢ (𝑦 = (0g‘𝑆) → (((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦) ↔ ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)))) |
| 13 | 9, 12 | rspc2va 2901 | . . . . 5 ⊢ ((((0g‘𝑆) ∈ 𝐵 ∧ (0g‘𝑆) ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) |
| 14 | 5, 5, 6, 13 | syl21anc 1251 | . . . 4 ⊢ (𝜑 → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) |
| 15 | eqid 2209 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 16 | 2, 15, 3 | grplid 13530 | . . . . 5 ⊢ ((𝑆 ∈ Grp ∧ (0g‘𝑆) ∈ 𝐵) → ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)) = (0g‘𝑆)) |
| 17 | 1, 4, 16 | syl2anc2 412 | . . . 4 ⊢ (𝜑 → ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)) = (0g‘𝑆)) |
| 18 | 14, 17 | eqtrd 2242 | . . 3 ⊢ (𝜑 → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆)) |
| 19 | grpidssd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Grp) | |
| 20 | grpidssd.c | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) | |
| 21 | 20, 5 | sseldd 3205 | . . . 4 ⊢ (𝜑 → (0g‘𝑆) ∈ (Base‘𝑀)) |
| 22 | eqid 2209 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 23 | eqid 2209 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 24 | eqid 2209 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 25 | 22, 23, 24 | grpidlcan 13565 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ (0g‘𝑆) ∈ (Base‘𝑀) ∧ (0g‘𝑆) ∈ (Base‘𝑀)) → (((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆) ↔ (0g‘𝑆) = (0g‘𝑀))) |
| 26 | 19, 21, 21, 25 | syl3anc 1252 | . . 3 ⊢ (𝜑 → (((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆) ↔ (0g‘𝑆) = (0g‘𝑀))) |
| 27 | 18, 26 | mpbid 147 | . 2 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑀)) |
| 28 | 27 | eqcomd 2215 | 1 ⊢ (𝜑 → (0g‘𝑀) = (0g‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∈ wcel 2180 ∀wral 2488 ⊆ wss 3177 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 0gc0g 13255 Grpcgrp 13499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-riota 5927 df-ov 5977 df-inn 9079 df-2 9137 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 |
| This theorem is referenced by: grpinvssd 13576 |
| Copyright terms: Public domain | W3C validator |