| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidssd | GIF version | ||
| Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| grpidssd.m | ⊢ (𝜑 → 𝑀 ∈ Grp) |
| grpidssd.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
| grpidssd.b | ⊢ 𝐵 = (Base‘𝑆) |
| grpidssd.c | ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) |
| grpidssd.o | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
| Ref | Expression |
|---|---|
| grpidssd | ⊢ (𝜑 → (0g‘𝑀) = (0g‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidssd.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
| 2 | grpidssd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | eqid 2229 | . . . . . . 7 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 4 | 2, 3 | grpidcl 13570 | . . . . . 6 ⊢ (𝑆 ∈ Grp → (0g‘𝑆) ∈ 𝐵) |
| 5 | 1, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → (0g‘𝑆) ∈ 𝐵) |
| 6 | grpidssd.o | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) | |
| 7 | oveq1 6014 | . . . . . . 7 ⊢ (𝑥 = (0g‘𝑆) → (𝑥(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑀)𝑦)) | |
| 8 | oveq1 6014 | . . . . . . 7 ⊢ (𝑥 = (0g‘𝑆) → (𝑥(+g‘𝑆)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦)) | |
| 9 | 7, 8 | eqeq12d 2244 | . . . . . 6 ⊢ (𝑥 = (0g‘𝑆) → ((𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦) ↔ ((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦))) |
| 10 | oveq2 6015 | . . . . . . 7 ⊢ (𝑦 = (0g‘𝑆) → ((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆))) | |
| 11 | oveq2 6015 | . . . . . . 7 ⊢ (𝑦 = (0g‘𝑆) → ((0g‘𝑆)(+g‘𝑆)𝑦) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) | |
| 12 | 10, 11 | eqeq12d 2244 | . . . . . 6 ⊢ (𝑦 = (0g‘𝑆) → (((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦) ↔ ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)))) |
| 13 | 9, 12 | rspc2va 2921 | . . . . 5 ⊢ ((((0g‘𝑆) ∈ 𝐵 ∧ (0g‘𝑆) ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) |
| 14 | 5, 5, 6, 13 | syl21anc 1270 | . . . 4 ⊢ (𝜑 → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) |
| 15 | eqid 2229 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 16 | 2, 15, 3 | grplid 13572 | . . . . 5 ⊢ ((𝑆 ∈ Grp ∧ (0g‘𝑆) ∈ 𝐵) → ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)) = (0g‘𝑆)) |
| 17 | 1, 4, 16 | syl2anc2 412 | . . . 4 ⊢ (𝜑 → ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)) = (0g‘𝑆)) |
| 18 | 14, 17 | eqtrd 2262 | . . 3 ⊢ (𝜑 → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆)) |
| 19 | grpidssd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Grp) | |
| 20 | grpidssd.c | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) | |
| 21 | 20, 5 | sseldd 3225 | . . . 4 ⊢ (𝜑 → (0g‘𝑆) ∈ (Base‘𝑀)) |
| 22 | eqid 2229 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 23 | eqid 2229 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 24 | eqid 2229 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 25 | 22, 23, 24 | grpidlcan 13607 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ (0g‘𝑆) ∈ (Base‘𝑀) ∧ (0g‘𝑆) ∈ (Base‘𝑀)) → (((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆) ↔ (0g‘𝑆) = (0g‘𝑀))) |
| 26 | 19, 21, 21, 25 | syl3anc 1271 | . . 3 ⊢ (𝜑 → (((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆) ↔ (0g‘𝑆) = (0g‘𝑀))) |
| 27 | 18, 26 | mpbid 147 | . 2 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑀)) |
| 28 | 27 | eqcomd 2235 | 1 ⊢ (𝜑 → (0g‘𝑀) = (0g‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 0gc0g 13297 Grpcgrp 13541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5960 df-ov 6010 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 |
| This theorem is referenced by: grpinvssd 13618 |
| Copyright terms: Public domain | W3C validator |