ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeoco Unicode version

Theorem hmeoco 14301
Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeoco  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J Homeo L ) )

Proof of Theorem hmeoco
StepHypRef Expression
1 hmeocn 14290 . . 3  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
2 hmeocn 14290 . . 3  |-  ( G  e.  ( K Homeo L )  ->  G  e.  ( K  Cn  L
) )
3 cnco 14206 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  F
)  e.  ( J  Cn  L ) )
41, 2, 3syl2an 289 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J  Cn  L ) )
5 cnvco 4833 . . 3  |-  `' ( G  o.  F )  =  ( `' F  o.  `' G )
6 hmeocnvcn 14291 . . . 4  |-  ( G  e.  ( K Homeo L )  ->  `' G  e.  ( L  Cn  K
) )
7 hmeocnvcn 14291 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J
) )
8 cnco 14206 . . . 4  |-  ( ( `' G  e.  ( L  Cn  K )  /\  `' F  e.  ( K  Cn  J ) )  ->  ( `' F  o.  `' G )  e.  ( L  Cn  J ) )
96, 7, 8syl2anr 290 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( `' F  o.  `' G
)  e.  ( L  Cn  J ) )
105, 9eqeltrid 2276 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  `' ( G  o.  F )  e.  ( L  Cn  J
) )
11 ishmeo 14289 . 2  |-  ( ( G  o.  F )  e.  ( J Homeo L )  <->  ( ( G  o.  F )  e.  ( J  Cn  L
)  /\  `' ( G  o.  F )  e.  ( L  Cn  J
) ) )
124, 10, 11sylanbrc 417 1  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J Homeo L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160   `'ccnv 4646    o. ccom 4651  (class class class)co 5900    Cn ccn 14170   Homeochmeo 14285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-map 6680  df-top 13983  df-topon 13996  df-cn 14173  df-hmeo 14286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator