ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeoco Unicode version

Theorem hmeoco 14788
Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeoco  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J Homeo L ) )

Proof of Theorem hmeoco
StepHypRef Expression
1 hmeocn 14777 . . 3  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
2 hmeocn 14777 . . 3  |-  ( G  e.  ( K Homeo L )  ->  G  e.  ( K  Cn  L
) )
3 cnco 14693 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  F
)  e.  ( J  Cn  L ) )
41, 2, 3syl2an 289 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J  Cn  L ) )
5 cnvco 4863 . . 3  |-  `' ( G  o.  F )  =  ( `' F  o.  `' G )
6 hmeocnvcn 14778 . . . 4  |-  ( G  e.  ( K Homeo L )  ->  `' G  e.  ( L  Cn  K
) )
7 hmeocnvcn 14778 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J
) )
8 cnco 14693 . . . 4  |-  ( ( `' G  e.  ( L  Cn  K )  /\  `' F  e.  ( K  Cn  J ) )  ->  ( `' F  o.  `' G )  e.  ( L  Cn  J ) )
96, 7, 8syl2anr 290 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( `' F  o.  `' G
)  e.  ( L  Cn  J ) )
105, 9eqeltrid 2292 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  `' ( G  o.  F )  e.  ( L  Cn  J
) )
11 ishmeo 14776 . 2  |-  ( ( G  o.  F )  e.  ( J Homeo L )  <->  ( ( G  o.  F )  e.  ( J  Cn  L
)  /\  `' ( G  o.  F )  e.  ( L  Cn  J
) ) )
124, 10, 11sylanbrc 417 1  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J Homeo L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   `'ccnv 4674    o. ccom 4679  (class class class)co 5944    Cn ccn 14657   Homeochmeo 14772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-top 14470  df-topon 14483  df-cn 14660  df-hmeo 14773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator