ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeoco Unicode version

Theorem hmeoco 14990
Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeoco  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J Homeo L ) )

Proof of Theorem hmeoco
StepHypRef Expression
1 hmeocn 14979 . . 3  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
2 hmeocn 14979 . . 3  |-  ( G  e.  ( K Homeo L )  ->  G  e.  ( K  Cn  L
) )
3 cnco 14895 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  F
)  e.  ( J  Cn  L ) )
41, 2, 3syl2an 289 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J  Cn  L ) )
5 cnvco 4907 . . 3  |-  `' ( G  o.  F )  =  ( `' F  o.  `' G )
6 hmeocnvcn 14980 . . . 4  |-  ( G  e.  ( K Homeo L )  ->  `' G  e.  ( L  Cn  K
) )
7 hmeocnvcn 14980 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J
) )
8 cnco 14895 . . . 4  |-  ( ( `' G  e.  ( L  Cn  K )  /\  `' F  e.  ( K  Cn  J ) )  ->  ( `' F  o.  `' G )  e.  ( L  Cn  J ) )
96, 7, 8syl2anr 290 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( `' F  o.  `' G
)  e.  ( L  Cn  J ) )
105, 9eqeltrid 2316 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  `' ( G  o.  F )  e.  ( L  Cn  J
) )
11 ishmeo 14978 . 2  |-  ( ( G  o.  F )  e.  ( J Homeo L )  <->  ( ( G  o.  F )  e.  ( J  Cn  L
)  /\  `' ( G  o.  F )  e.  ( L  Cn  J
) ) )
124, 10, 11sylanbrc 417 1  |-  ( ( F  e.  ( J
Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J Homeo L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   `'ccnv 4718    o. ccom 4723  (class class class)co 6001    Cn ccn 14859   Homeochmeo 14974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-top 14672  df-topon 14685  df-cn 14862  df-hmeo 14975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator