ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeof1o Unicode version

Theorem hmeof1o 13894
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
hmeof1o.1  |-  X  = 
U. J
hmeof1o.2  |-  Y  = 
U. K
Assertion
Ref Expression
hmeof1o  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> Y )

Proof of Theorem hmeof1o
StepHypRef Expression
1 hmeocn 13890 . . 3  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
2 cntop1 13786 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
3 hmeof1o.1 . . . . . 6  |-  X  = 
U. J
43toptopon 13603 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
52, 4sylib 122 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
6 cntop2 13787 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
7 hmeof1o.2 . . . . . 6  |-  Y  = 
U. K
87toptopon 13603 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
96, 8sylib 122 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  (TopOn `  Y )
)
105, 9jca 306 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) ) )
111, 10syl 14 . 2  |-  ( F  e.  ( J Homeo K )  ->  ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) ) )
12 hmeof1o2 13893 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) )  ->  F : X -1-1-onto-> Y
)
13123expia 1205 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J Homeo K )  ->  F : X -1-1-onto-> Y
) )
1411, 13mpcom 36 1  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   U.cuni 3811   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5877   Topctop 13582  TopOnctopon 13595    Cn ccn 13770   Homeochmeo 13885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-top 13583  df-topon 13596  df-cn 13773  df-hmeo 13886
This theorem is referenced by:  hmeoopn  13896  hmeocld  13897  hmeontr  13898  hmeoimaf1o  13899  txhmeo  13904
  Copyright terms: Public domain W3C validator