ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeof1o Unicode version

Theorem hmeof1o 14983
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
hmeof1o.1  |-  X  = 
U. J
hmeof1o.2  |-  Y  = 
U. K
Assertion
Ref Expression
hmeof1o  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> Y )

Proof of Theorem hmeof1o
StepHypRef Expression
1 hmeocn 14979 . . 3  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
2 cntop1 14875 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
3 hmeof1o.1 . . . . . 6  |-  X  = 
U. J
43toptopon 14692 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
52, 4sylib 122 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
6 cntop2 14876 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
7 hmeof1o.2 . . . . . 6  |-  Y  = 
U. K
87toptopon 14692 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
96, 8sylib 122 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  (TopOn `  Y )
)
105, 9jca 306 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) ) )
111, 10syl 14 . 2  |-  ( F  e.  ( J Homeo K )  ->  ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) ) )
12 hmeof1o2 14982 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) )  ->  F : X -1-1-onto-> Y
)
13123expia 1229 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J Homeo K )  ->  F : X -1-1-onto-> Y
) )
1411, 13mpcom 36 1  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   U.cuni 3888   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   Topctop 14671  TopOnctopon 14684    Cn ccn 14859   Homeochmeo 14974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-top 14672  df-topon 14685  df-cn 14862  df-hmeo 14975
This theorem is referenced by:  hmeoopn  14985  hmeocld  14986  hmeontr  14987  hmeoimaf1o  14988  txhmeo  14993
  Copyright terms: Public domain W3C validator