ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeof1o Unicode version

Theorem hmeof1o 14629
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
hmeof1o.1  |-  X  = 
U. J
hmeof1o.2  |-  Y  = 
U. K
Assertion
Ref Expression
hmeof1o  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> Y )

Proof of Theorem hmeof1o
StepHypRef Expression
1 hmeocn 14625 . . 3  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
2 cntop1 14521 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
3 hmeof1o.1 . . . . . 6  |-  X  = 
U. J
43toptopon 14338 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
52, 4sylib 122 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
6 cntop2 14522 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
7 hmeof1o.2 . . . . . 6  |-  Y  = 
U. K
87toptopon 14338 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
96, 8sylib 122 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  (TopOn `  Y )
)
105, 9jca 306 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) ) )
111, 10syl 14 . 2  |-  ( F  e.  ( J Homeo K )  ->  ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) ) )
12 hmeof1o2 14628 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) )  ->  F : X -1-1-onto-> Y
)
13123expia 1207 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J Homeo K )  ->  F : X -1-1-onto-> Y
) )
1411, 13mpcom 36 1  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   U.cuni 3840   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925   Topctop 14317  TopOnctopon 14330    Cn ccn 14505   Homeochmeo 14620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-top 14318  df-topon 14331  df-cn 14508  df-hmeo 14621
This theorem is referenced by:  hmeoopn  14631  hmeocld  14632  hmeontr  14633  hmeoimaf1o  14634  txhmeo  14639
  Copyright terms: Public domain W3C validator