ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnima Unicode version

Theorem cnima 13805
Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.)
Assertion
Ref Expression
cnima  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  K )  ->  ( `' F " A )  e.  J
)

Proof of Theorem cnima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . . 5  |-  U. J  =  U. J
2 eqid 2177 . . . . 5  |-  U. K  =  U. K
31, 2iscn2 13785 . . . 4  |-  ( F  e.  ( J  Cn  K )  <->  ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : U. J --> U. K  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
43simprbi 275 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  ( F : U. J --> U. K  /\  A. x  e.  K  ( `' F " x )  e.  J ) )
54simprd 114 . 2  |-  ( F  e.  ( J  Cn  K )  ->  A. x  e.  K  ( `' F " x )  e.  J )
6 imaeq2 4968 . . . 4  |-  ( x  =  A  ->  ( `' F " x )  =  ( `' F " A ) )
76eleq1d 2246 . . 3  |-  ( x  =  A  ->  (
( `' F "
x )  e.  J  <->  ( `' F " A )  e.  J ) )
87rspccva 2842 . 2  |-  ( ( A. x  e.  K  ( `' F " x )  e.  J  /\  A  e.  K )  ->  ( `' F " A )  e.  J )
95, 8sylan 283 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  K )  ->  ( `' F " A )  e.  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   U.cuni 3811   `'ccnv 4627   "cima 4631   -->wf 5214  (class class class)co 5877   Topctop 13582    Cn ccn 13770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-top 13583  df-topon 13596  df-cn 13773
This theorem is referenced by:  cnco  13806  cnclima  13808  cnntri  13809  cnss1  13811  cnss2  13812  cncnpi  13813  cnrest  13820  txcnmpt  13858  txdis1cn  13863  imasnopn  13884  hmeoima  13895  hmeoopn  13896  hmeoimaf1o  13899
  Copyright terms: Public domain W3C validator