| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnima | Unicode version | ||
| Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| cnima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . . . 5
| |
| 2 | eqid 2205 |
. . . . 5
| |
| 3 | 1, 2 | iscn2 14705 |
. . . 4
|
| 4 | 3 | simprbi 275 |
. . 3
|
| 5 | 4 | simprd 114 |
. 2
|
| 6 | imaeq2 5019 |
. . . 4
| |
| 7 | 6 | eleq1d 2274 |
. . 3
|
| 8 | 7 | rspccva 2876 |
. 2
|
| 9 | 5, 8 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-map 6739 df-top 14503 df-topon 14516 df-cn 14693 |
| This theorem is referenced by: cnco 14726 cnclima 14728 cnntri 14729 cnss1 14731 cnss2 14732 cncnpi 14733 cnrest 14740 txcnmpt 14778 txdis1cn 14783 imasnopn 14804 hmeoima 14815 hmeoopn 14816 hmeoimaf1o 14819 |
| Copyright terms: Public domain | W3C validator |