ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnima Unicode version

Theorem cnima 14456
Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.)
Assertion
Ref Expression
cnima  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  K )  ->  ( `' F " A )  e.  J
)

Proof of Theorem cnima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . 5  |-  U. J  =  U. J
2 eqid 2196 . . . . 5  |-  U. K  =  U. K
31, 2iscn2 14436 . . . 4  |-  ( F  e.  ( J  Cn  K )  <->  ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : U. J --> U. K  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
43simprbi 275 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  ( F : U. J --> U. K  /\  A. x  e.  K  ( `' F " x )  e.  J ) )
54simprd 114 . 2  |-  ( F  e.  ( J  Cn  K )  ->  A. x  e.  K  ( `' F " x )  e.  J )
6 imaeq2 5005 . . . 4  |-  ( x  =  A  ->  ( `' F " x )  =  ( `' F " A ) )
76eleq1d 2265 . . 3  |-  ( x  =  A  ->  (
( `' F "
x )  e.  J  <->  ( `' F " A )  e.  J ) )
87rspccva 2867 . 2  |-  ( ( A. x  e.  K  ( `' F " x )  e.  J  /\  A  e.  K )  ->  ( `' F " A )  e.  J )
95, 8sylan 283 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  K )  ->  ( `' F " A )  e.  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   U.cuni 3839   `'ccnv 4662   "cima 4666   -->wf 5254  (class class class)co 5922   Topctop 14233    Cn ccn 14421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-top 14234  df-topon 14247  df-cn 14424
This theorem is referenced by:  cnco  14457  cnclima  14459  cnntri  14460  cnss1  14462  cnss2  14463  cncnpi  14464  cnrest  14471  txcnmpt  14509  txdis1cn  14514  imasnopn  14535  hmeoima  14546  hmeoopn  14547  hmeoimaf1o  14550
  Copyright terms: Public domain W3C validator