ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnima Unicode version

Theorem cnima 14103
Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.)
Assertion
Ref Expression
cnima  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  K )  ->  ( `' F " A )  e.  J
)

Proof of Theorem cnima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2188 . . . . 5  |-  U. J  =  U. J
2 eqid 2188 . . . . 5  |-  U. K  =  U. K
31, 2iscn2 14083 . . . 4  |-  ( F  e.  ( J  Cn  K )  <->  ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : U. J --> U. K  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
43simprbi 275 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  ( F : U. J --> U. K  /\  A. x  e.  K  ( `' F " x )  e.  J ) )
54simprd 114 . 2  |-  ( F  e.  ( J  Cn  K )  ->  A. x  e.  K  ( `' F " x )  e.  J )
6 imaeq2 4980 . . . 4  |-  ( x  =  A  ->  ( `' F " x )  =  ( `' F " A ) )
76eleq1d 2257 . . 3  |-  ( x  =  A  ->  (
( `' F "
x )  e.  J  <->  ( `' F " A )  e.  J ) )
87rspccva 2854 . 2  |-  ( ( A. x  e.  K  ( `' F " x )  e.  J  /\  A  e.  K )  ->  ( `' F " A )  e.  J )
95, 8sylan 283 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  K )  ->  ( `' F " A )  e.  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2159   A.wral 2467   U.cuni 3823   `'ccnv 4639   "cima 4643   -->wf 5226  (class class class)co 5890   Topctop 13880    Cn ccn 14068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-fv 5238  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-map 6667  df-top 13881  df-topon 13894  df-cn 14071
This theorem is referenced by:  cnco  14104  cnclima  14106  cnntri  14107  cnss1  14109  cnss2  14110  cncnpi  14111  cnrest  14118  txcnmpt  14156  txdis1cn  14161  imasnopn  14182  hmeoima  14193  hmeoopn  14194  hmeoimaf1o  14197
  Copyright terms: Public domain W3C validator