| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hmeoopn | GIF version | ||
| Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| hmeoopn | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐹 “ 𝐴) ∈ 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeoima 14969 | . . . 4 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → (𝐴 ∈ 𝐽 → (𝐹 “ 𝐴) ∈ 𝐾)) |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 → (𝐹 “ 𝐴) ∈ 𝐾)) |
| 4 | hmeocn 14964 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 5 | cnima 14879 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹 “ 𝐴) ∈ 𝐾) → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽) | |
| 6 | 5 | ex 115 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹 “ 𝐴) ∈ 𝐾 → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽)) |
| 7 | 4, 6 | syl 14 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ((𝐹 “ 𝐴) ∈ 𝐾 → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽)) |
| 8 | 7 | adantr 276 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 “ 𝐴) ∈ 𝐾 → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽)) |
| 9 | hmeoopn.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 10 | eqid 2229 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 11 | 9, 10 | hmeof1o 14968 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→∪ 𝐾) |
| 12 | f1of1 5567 | . . . . . 6 ⊢ (𝐹:𝑋–1-1-onto→∪ 𝐾 → 𝐹:𝑋–1-1→∪ 𝐾) | |
| 13 | 11, 12 | syl 14 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1→∪ 𝐾) |
| 14 | f1imacnv 5585 | . . . . 5 ⊢ ((𝐹:𝑋–1-1→∪ 𝐾 ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) | |
| 15 | 13, 14 | sylan 283 | . . . 4 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) |
| 16 | 15 | eleq1d 2298 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽 ↔ 𝐴 ∈ 𝐽)) |
| 17 | 8, 16 | sylibd 149 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 “ 𝐴) ∈ 𝐾 → 𝐴 ∈ 𝐽)) |
| 18 | 3, 17 | impbid 129 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐹 “ 𝐴) ∈ 𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ∪ cuni 3887 ◡ccnv 4715 “ cima 4719 –1-1→wf1 5311 –1-1-onto→wf1o 5313 (class class class)co 5994 Cn ccn 14844 Homeochmeo 14959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-map 6787 df-top 14657 df-topon 14670 df-cn 14847 df-hmeo 14960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |