| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hmeoopn | GIF version | ||
| Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| hmeoopn | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐹 “ 𝐴) ∈ 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeoima 14832 | . . . 4 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → (𝐴 ∈ 𝐽 → (𝐹 “ 𝐴) ∈ 𝐾)) |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 → (𝐹 “ 𝐴) ∈ 𝐾)) |
| 4 | hmeocn 14827 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 5 | cnima 14742 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹 “ 𝐴) ∈ 𝐾) → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽) | |
| 6 | 5 | ex 115 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹 “ 𝐴) ∈ 𝐾 → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽)) |
| 7 | 4, 6 | syl 14 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ((𝐹 “ 𝐴) ∈ 𝐾 → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽)) |
| 8 | 7 | adantr 276 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 “ 𝐴) ∈ 𝐾 → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽)) |
| 9 | hmeoopn.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 10 | eqid 2206 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 11 | 9, 10 | hmeof1o 14831 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→∪ 𝐾) |
| 12 | f1of1 5530 | . . . . . 6 ⊢ (𝐹:𝑋–1-1-onto→∪ 𝐾 → 𝐹:𝑋–1-1→∪ 𝐾) | |
| 13 | 11, 12 | syl 14 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1→∪ 𝐾) |
| 14 | f1imacnv 5548 | . . . . 5 ⊢ ((𝐹:𝑋–1-1→∪ 𝐾 ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) | |
| 15 | 13, 14 | sylan 283 | . . . 4 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) |
| 16 | 15 | eleq1d 2275 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽 ↔ 𝐴 ∈ 𝐽)) |
| 17 | 8, 16 | sylibd 149 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 “ 𝐴) ∈ 𝐾 → 𝐴 ∈ 𝐽)) |
| 18 | 3, 17 | impbid 129 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐹 “ 𝐴) ∈ 𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ⊆ wss 3168 ∪ cuni 3853 ◡ccnv 4679 “ cima 4683 –1-1→wf1 5274 –1-1-onto→wf1o 5276 (class class class)co 5954 Cn ccn 14707 Homeochmeo 14822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-map 6747 df-top 14520 df-topon 14533 df-cn 14710 df-hmeo 14823 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |