ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeoopn GIF version

Theorem hmeoopn 13951
Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeoopn ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐹𝐴) ∈ 𝐾))

Proof of Theorem hmeoopn
StepHypRef Expression
1 hmeoima 13950 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐾)
21ex 115 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → (𝐴𝐽 → (𝐹𝐴) ∈ 𝐾))
32adantr 276 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 → (𝐹𝐴) ∈ 𝐾))
4 hmeocn 13945 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
5 cnima 13860 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝐴) ∈ 𝐾) → (𝐹 “ (𝐹𝐴)) ∈ 𝐽)
65ex 115 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹𝐴) ∈ 𝐾 → (𝐹 “ (𝐹𝐴)) ∈ 𝐽))
74, 6syl 14 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → ((𝐹𝐴) ∈ 𝐾 → (𝐹 “ (𝐹𝐴)) ∈ 𝐽))
87adantr 276 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝐾 → (𝐹 “ (𝐹𝐴)) ∈ 𝐽))
9 hmeoopn.1 . . . . . . 7 𝑋 = 𝐽
10 eqid 2177 . . . . . . 7 𝐾 = 𝐾
119, 10hmeof1o 13949 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto 𝐾)
12 f1of1 5462 . . . . . 6 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋1-1 𝐾)
1311, 12syl 14 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1 𝐾)
14 f1imacnv 5480 . . . . 5 ((𝐹:𝑋1-1 𝐾𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1513, 14sylan 283 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1615eleq1d 2246 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹 “ (𝐹𝐴)) ∈ 𝐽𝐴𝐽))
178, 16sylibd 149 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝐾𝐴𝐽))
183, 17impbid 129 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐹𝐴) ∈ 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wss 3131   cuni 3811  ccnv 4627  cima 4631  1-1wf1 5215  1-1-ontowf1o 5217  (class class class)co 5878   Cn ccn 13825  Homeochmeo 13940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-map 6653  df-top 13638  df-topon 13651  df-cn 13828  df-hmeo 13941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator