![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pnfge | Unicode version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pnfge |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnlt 9853 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pnfxr 8072 |
. . 3
![]() ![]() ![]() ![]() | |
3 | xrlenlt 8084 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpan2 425 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbird 167 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 |
This theorem is referenced by: 0lepnf 9856 xnn0dcle 9868 xnn0letri 9869 xrre2 9887 xleadd1a 9939 xltadd1 9942 xlt2add 9946 xsubge0 9947 xlesubadd 9949 xleaddadd 9953 elico2 10003 iccmax 10015 elxrge0 10044 elicore 10335 xqltnle 10336 xrmaxifle 11389 xrmaxadd 11404 xrbdtri 11419 pcdvdsb 12458 pc2dvds 12468 pcaddlem 12477 isxmet2d 14516 blssec 14606 |
Copyright terms: Public domain | W3C validator |