ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfge Unicode version

Theorem pnfge 9678
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
pnfge  |-  ( A  e.  RR*  ->  A  <_ +oo )

Proof of Theorem pnfge
StepHypRef Expression
1 pnfnlt 9676 . 2  |-  ( A  e.  RR*  ->  -. +oo  <  A )
2 pnfxr 7913 . . 3  |- +oo  e.  RR*
3 xrlenlt 7925 . . 3  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  ( A  <_ +oo  <->  -. +oo  <  A
) )
42, 3mpan2 422 . 2  |-  ( A  e.  RR*  ->  ( A  <_ +oo  <->  -. +oo  <  A
) )
51, 4mpbird 166 1  |-  ( A  e.  RR*  ->  A  <_ +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    e. wcel 2128   class class class wbr 3965   +oocpnf 7892   RR*cxr 7894    < clt 7895    <_ cle 7896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-cnex 7806  ax-resscn 7807
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4589  df-cnv 4591  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901
This theorem is referenced by:  0lepnf  9679  xrre2  9707  xleadd1a  9759  xltadd1  9762  xlt2add  9766  xsubge0  9767  xlesubadd  9769  xleaddadd  9773  elico2  9823  iccmax  9835  elxrge0  9864  elicore  10148  xrmaxifle  11125  xrmaxadd  11140  xrbdtri  11155  isxmet2d  12708  blssec  12798
  Copyright terms: Public domain W3C validator