ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfge Unicode version

Theorem pnfge 9913
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
pnfge  |-  ( A  e.  RR*  ->  A  <_ +oo )

Proof of Theorem pnfge
StepHypRef Expression
1 pnfnlt 9911 . 2  |-  ( A  e.  RR*  ->  -. +oo  <  A )
2 pnfxr 8127 . . 3  |- +oo  e.  RR*
3 xrlenlt 8139 . . 3  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  ( A  <_ +oo  <->  -. +oo  <  A
) )
42, 3mpan2 425 . 2  |-  ( A  e.  RR*  ->  ( A  <_ +oo  <->  -. +oo  <  A
) )
51, 4mpbird 167 1  |-  ( A  e.  RR*  ->  A  <_ +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    e. wcel 2176   class class class wbr 4045   +oocpnf 8106   RR*cxr 8108    < clt 8109    <_ cle 8110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-cnex 8018  ax-resscn 8019
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-cnv 4684  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115
This theorem is referenced by:  0lepnf  9914  xnn0dcle  9926  xnn0letri  9927  xrre2  9945  xleadd1a  9997  xltadd1  10000  xlt2add  10004  xsubge0  10005  xlesubadd  10007  xleaddadd  10011  elico2  10061  iccmax  10073  elxrge0  10102  elicore  10411  xqltnle  10412  xrmaxifle  11590  xrmaxadd  11605  xrbdtri  11620  pcdvdsb  12676  pc2dvds  12686  pcaddlem  12695  isxmet2d  14853  blssec  14943
  Copyright terms: Public domain W3C validator