ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemjn Unicode version

Theorem ennnfonelemjn 12888
Description: Lemma for ennnfone 12911. Non-initial state for  J. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelemjn  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
Distinct variable groups:    x, A, y   
x, F, y    x, N    x, f, y    x, j, y    ph, x, y
Allowed substitution hints:    ph( f, j, k, n)    A( f, j, k, n)    F( f, j, k, n)    G( x, y, f, j, k, n)    H( x, y, f, j, k, n)    J( x, y, f, j, k, n)    N( y, f, j, k, n)

Proof of Theorem ennnfonelemjn
StepHypRef Expression
1 nnuz 9719 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 0p1e1 9185 . . . . 5  |-  ( 0  +  1 )  =  1
32fveq2i 5602 . . . 4  |-  ( ZZ>= `  ( 0  +  1 ) )  =  (
ZZ>= `  1 )
41, 3eqtr4i 2231 . . 3  |-  NN  =  ( ZZ>= `  ( 0  +  1 ) )
54eleq2i 2274 . 2  |-  ( f  e.  NN  <->  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )
6 ennnfonelemh.j . . . 4  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 eqeq1 2214 . . . . 5  |-  ( x  =  f  ->  (
x  =  0  <->  f  =  0 ) )
8 fvoveq1 5990 . . . . 5  |-  ( x  =  f  ->  ( `' N `  ( x  -  1 ) )  =  ( `' N `  ( f  -  1 ) ) )
97, 8ifbieq2d 3604 . . . 4  |-  ( x  =  f  ->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) )  =  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) ) )
10 nnnn0 9337 . . . . 5  |-  ( f  e.  NN  ->  f  e.  NN0 )
1110adantl 277 . . . 4  |-  ( (
ph  /\  f  e.  NN )  ->  f  e. 
NN0 )
12 nnne0 9099 . . . . . . . 8  |-  ( f  e.  NN  ->  f  =/=  0 )
1312neneqd 2399 . . . . . . 7  |-  ( f  e.  NN  ->  -.  f  =  0 )
1413iffalsed 3589 . . . . . 6  |-  ( f  e.  NN  ->  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) )  =  ( `' N `  ( f  -  1 ) ) )
1514adantl 277 . . . . 5  |-  ( (
ph  /\  f  e.  NN )  ->  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) )  =  ( `' N `  ( f  -  1 ) ) )
16 0zd 9419 . . . . . . . 8  |-  ( (
ph  /\  f  e.  NN )  ->  0  e.  ZZ )
17 ennnfonelemh.n . . . . . . . 8  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
1816, 17frec2uzf1od 10588 . . . . . . 7  |-  ( (
ph  /\  f  e.  NN )  ->  N : om
-1-1-onto-> ( ZZ>= `  0 )
)
19 f1ocnv 5557 . . . . . . 7  |-  ( N : om -1-1-onto-> ( ZZ>= `  0 )  ->  `' N : ( ZZ>= ` 
0 ) -1-1-onto-> om )
20 f1of 5544 . . . . . . 7  |-  ( `' N : ( ZZ>= ` 
0 ) -1-1-onto-> om  ->  `' N : ( ZZ>= `  0
) --> om )
2118, 19, 203syl 17 . . . . . 6  |-  ( (
ph  /\  f  e.  NN )  ->  `' N : ( ZZ>= `  0
) --> om )
22 0z 9418 . . . . . . 7  |-  0  e.  ZZ
235biimpi 120 . . . . . . . 8  |-  ( f  e.  NN  ->  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )
2423adantl 277 . . . . . . 7  |-  ( (
ph  /\  f  e.  NN )  ->  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )
25 eluzp1m1 9707 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  -> 
( f  -  1 )  e.  ( ZZ>= ` 
0 ) )
2622, 24, 25sylancr 414 . . . . . 6  |-  ( (
ph  /\  f  e.  NN )  ->  ( f  -  1 )  e.  ( ZZ>= `  0 )
)
2721, 26ffvelcdmd 5739 . . . . 5  |-  ( (
ph  /\  f  e.  NN )  ->  ( `' N `  ( f  -  1 ) )  e.  om )
2815, 27eqeltrd 2284 . . . 4  |-  ( (
ph  /\  f  e.  NN )  ->  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) )  e. 
om )
296, 9, 11, 28fvmptd3 5696 . . 3  |-  ( (
ph  /\  f  e.  NN )  ->  ( J `
 f )  =  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) ) )
3029, 28eqeltrd 2284 . 2  |-  ( (
ph  /\  f  e.  NN )  ->  ( J `
 f )  e. 
om )
315, 30sylan2br 288 1  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   E.wrex 2487    u. cun 3172   (/)c0 3468   ifcif 3579   {csn 3643   <.cop 3646    |-> cmpt 4121   suc csuc 4430   omcom 4656   `'ccnv 4692   dom cdm 4693   "cima 4696   -->wf 5286   -onto->wfo 5288   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967    e. cmpo 5969  freccfrec 6499    ^pm cpm 6759   0cc0 7960   1c1 7961    + caddc 7963    - cmin 8278   NNcn 9071   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683    seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684
This theorem is referenced by:  ennnfonelemh  12890  ennnfonelem0  12891  ennnfonelemp1  12892  ennnfonelemom  12894
  Copyright terms: Public domain W3C validator