ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemjn Unicode version

Theorem ennnfonelemjn 11915
Description: Lemma for ennnfone 11938. Non-initial state for  J. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelemjn  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
Distinct variable groups:    x, A, y   
x, F, y    x, N    x, f, y    x, j, y    ph, x, y
Allowed substitution hints:    ph( f, j, k, n)    A( f, j, k, n)    F( f, j, k, n)    G( x, y, f, j, k, n)    H( x, y, f, j, k, n)    J( x, y, f, j, k, n)    N( y, f, j, k, n)

Proof of Theorem ennnfonelemjn
StepHypRef Expression
1 nnuz 9361 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 0p1e1 8834 . . . . 5  |-  ( 0  +  1 )  =  1
32fveq2i 5424 . . . 4  |-  ( ZZ>= `  ( 0  +  1 ) )  =  (
ZZ>= `  1 )
41, 3eqtr4i 2163 . . 3  |-  NN  =  ( ZZ>= `  ( 0  +  1 ) )
54eleq2i 2206 . 2  |-  ( f  e.  NN  <->  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )
6 ennnfonelemh.j . . . 4  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 eqeq1 2146 . . . . 5  |-  ( x  =  f  ->  (
x  =  0  <->  f  =  0 ) )
8 fvoveq1 5797 . . . . 5  |-  ( x  =  f  ->  ( `' N `  ( x  -  1 ) )  =  ( `' N `  ( f  -  1 ) ) )
97, 8ifbieq2d 3496 . . . 4  |-  ( x  =  f  ->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) )  =  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) ) )
10 nnnn0 8984 . . . . 5  |-  ( f  e.  NN  ->  f  e.  NN0 )
1110adantl 275 . . . 4  |-  ( (
ph  /\  f  e.  NN )  ->  f  e. 
NN0 )
12 nnne0 8748 . . . . . . . 8  |-  ( f  e.  NN  ->  f  =/=  0 )
1312neneqd 2329 . . . . . . 7  |-  ( f  e.  NN  ->  -.  f  =  0 )
1413iffalsed 3484 . . . . . 6  |-  ( f  e.  NN  ->  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) )  =  ( `' N `  ( f  -  1 ) ) )
1514adantl 275 . . . . 5  |-  ( (
ph  /\  f  e.  NN )  ->  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) )  =  ( `' N `  ( f  -  1 ) ) )
16 0zd 9066 . . . . . . . 8  |-  ( (
ph  /\  f  e.  NN )  ->  0  e.  ZZ )
17 ennnfonelemh.n . . . . . . . 8  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
1816, 17frec2uzf1od 10179 . . . . . . 7  |-  ( (
ph  /\  f  e.  NN )  ->  N : om
-1-1-onto-> ( ZZ>= `  0 )
)
19 f1ocnv 5380 . . . . . . 7  |-  ( N : om -1-1-onto-> ( ZZ>= `  0 )  ->  `' N : ( ZZ>= ` 
0 ) -1-1-onto-> om )
20 f1of 5367 . . . . . . 7  |-  ( `' N : ( ZZ>= ` 
0 ) -1-1-onto-> om  ->  `' N : ( ZZ>= `  0
) --> om )
2118, 19, 203syl 17 . . . . . 6  |-  ( (
ph  /\  f  e.  NN )  ->  `' N : ( ZZ>= `  0
) --> om )
22 0z 9065 . . . . . . 7  |-  0  e.  ZZ
235biimpi 119 . . . . . . . 8  |-  ( f  e.  NN  ->  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )
2423adantl 275 . . . . . . 7  |-  ( (
ph  /\  f  e.  NN )  ->  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )
25 eluzp1m1 9349 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  -> 
( f  -  1 )  e.  ( ZZ>= ` 
0 ) )
2622, 24, 25sylancr 410 . . . . . 6  |-  ( (
ph  /\  f  e.  NN )  ->  ( f  -  1 )  e.  ( ZZ>= `  0 )
)
2721, 26ffvelrnd 5556 . . . . 5  |-  ( (
ph  /\  f  e.  NN )  ->  ( `' N `  ( f  -  1 ) )  e.  om )
2815, 27eqeltrd 2216 . . . 4  |-  ( (
ph  /\  f  e.  NN )  ->  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) )  e. 
om )
296, 9, 11, 28fvmptd3 5514 . . 3  |-  ( (
ph  /\  f  e.  NN )  ->  ( J `
 f )  =  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) ) )
3029, 28eqeltrd 2216 . 2  |-  ( (
ph  /\  f  e.  NN )  ->  ( J `
 f )  e. 
om )
315, 30sylan2br 286 1  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 819    = wceq 1331    e. wcel 1480    =/= wne 2308   A.wral 2416   E.wrex 2417    u. cun 3069   (/)c0 3363   ifcif 3474   {csn 3527   <.cop 3530    |-> cmpt 3989   suc csuc 4287   omcom 4504   `'ccnv 4538   dom cdm 4539   "cima 4542   -->wf 5119   -onto->wfo 5121   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774    e. cmpo 5776  freccfrec 6287    ^pm cpm 6543   0cc0 7620   1c1 7621    + caddc 7623    - cmin 7933   NNcn 8720   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326    seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327
This theorem is referenced by:  ennnfonelemh  11917  ennnfonelem0  11918  ennnfonelemp1  11919  ennnfonelemom  11921
  Copyright terms: Public domain W3C validator