ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemjn Unicode version

Theorem ennnfonelemjn 12973
Description: Lemma for ennnfone 12996. Non-initial state for  J. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelemjn  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
Distinct variable groups:    x, A, y   
x, F, y    x, N    x, f, y    x, j, y    ph, x, y
Allowed substitution hints:    ph( f, j, k, n)    A( f, j, k, n)    F( f, j, k, n)    G( x, y, f, j, k, n)    H( x, y, f, j, k, n)    J( x, y, f, j, k, n)    N( y, f, j, k, n)

Proof of Theorem ennnfonelemjn
StepHypRef Expression
1 nnuz 9758 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 0p1e1 9224 . . . . 5  |-  ( 0  +  1 )  =  1
32fveq2i 5630 . . . 4  |-  ( ZZ>= `  ( 0  +  1 ) )  =  (
ZZ>= `  1 )
41, 3eqtr4i 2253 . . 3  |-  NN  =  ( ZZ>= `  ( 0  +  1 ) )
54eleq2i 2296 . 2  |-  ( f  e.  NN  <->  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )
6 ennnfonelemh.j . . . 4  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 eqeq1 2236 . . . . 5  |-  ( x  =  f  ->  (
x  =  0  <->  f  =  0 ) )
8 fvoveq1 6024 . . . . 5  |-  ( x  =  f  ->  ( `' N `  ( x  -  1 ) )  =  ( `' N `  ( f  -  1 ) ) )
97, 8ifbieq2d 3627 . . . 4  |-  ( x  =  f  ->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) )  =  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) ) )
10 nnnn0 9376 . . . . 5  |-  ( f  e.  NN  ->  f  e.  NN0 )
1110adantl 277 . . . 4  |-  ( (
ph  /\  f  e.  NN )  ->  f  e. 
NN0 )
12 nnne0 9138 . . . . . . . 8  |-  ( f  e.  NN  ->  f  =/=  0 )
1312neneqd 2421 . . . . . . 7  |-  ( f  e.  NN  ->  -.  f  =  0 )
1413iffalsed 3612 . . . . . 6  |-  ( f  e.  NN  ->  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) )  =  ( `' N `  ( f  -  1 ) ) )
1514adantl 277 . . . . 5  |-  ( (
ph  /\  f  e.  NN )  ->  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) )  =  ( `' N `  ( f  -  1 ) ) )
16 0zd 9458 . . . . . . . 8  |-  ( (
ph  /\  f  e.  NN )  ->  0  e.  ZZ )
17 ennnfonelemh.n . . . . . . . 8  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
1816, 17frec2uzf1od 10628 . . . . . . 7  |-  ( (
ph  /\  f  e.  NN )  ->  N : om
-1-1-onto-> ( ZZ>= `  0 )
)
19 f1ocnv 5585 . . . . . . 7  |-  ( N : om -1-1-onto-> ( ZZ>= `  0 )  ->  `' N : ( ZZ>= ` 
0 ) -1-1-onto-> om )
20 f1of 5572 . . . . . . 7  |-  ( `' N : ( ZZ>= ` 
0 ) -1-1-onto-> om  ->  `' N : ( ZZ>= `  0
) --> om )
2118, 19, 203syl 17 . . . . . 6  |-  ( (
ph  /\  f  e.  NN )  ->  `' N : ( ZZ>= `  0
) --> om )
22 0z 9457 . . . . . . 7  |-  0  e.  ZZ
235biimpi 120 . . . . . . . 8  |-  ( f  e.  NN  ->  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )
2423adantl 277 . . . . . . 7  |-  ( (
ph  /\  f  e.  NN )  ->  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )
25 eluzp1m1 9746 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  -> 
( f  -  1 )  e.  ( ZZ>= ` 
0 ) )
2622, 24, 25sylancr 414 . . . . . 6  |-  ( (
ph  /\  f  e.  NN )  ->  ( f  -  1 )  e.  ( ZZ>= `  0 )
)
2721, 26ffvelcdmd 5771 . . . . 5  |-  ( (
ph  /\  f  e.  NN )  ->  ( `' N `  ( f  -  1 ) )  e.  om )
2815, 27eqeltrd 2306 . . . 4  |-  ( (
ph  /\  f  e.  NN )  ->  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) )  e. 
om )
296, 9, 11, 28fvmptd3 5728 . . 3  |-  ( (
ph  /\  f  e.  NN )  ->  ( J `
 f )  =  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) ) )
3029, 28eqeltrd 2306 . 2  |-  ( (
ph  /\  f  e.  NN )  ->  ( J `
 f )  e. 
om )
315, 30sylan2br 288 1  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   E.wrex 2509    u. cun 3195   (/)c0 3491   ifcif 3602   {csn 3666   <.cop 3669    |-> cmpt 4145   suc csuc 4456   omcom 4682   `'ccnv 4718   dom cdm 4719   "cima 4722   -->wf 5314   -onto->wfo 5316   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001    e. cmpo 6003  freccfrec 6536    ^pm cpm 6796   0cc0 7999   1c1 8000    + caddc 8002    - cmin 8317   NNcn 9110   NN0cn0 9369   ZZcz 9446   ZZ>=cuz 9722    seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723
This theorem is referenced by:  ennnfonelemh  12975  ennnfonelem0  12976  ennnfonelemp1  12977  ennnfonelemom  12979
  Copyright terms: Public domain W3C validator