ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemjn Unicode version

Theorem ennnfonelemjn 12428
Description: Lemma for ennnfone 12451. Non-initial state for  J. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelemjn  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
Distinct variable groups:    x, A, y   
x, F, y    x, N    x, f, y    x, j, y    ph, x, y
Allowed substitution hints:    ph( f, j, k, n)    A( f, j, k, n)    F( f, j, k, n)    G( x, y, f, j, k, n)    H( x, y, f, j, k, n)    J( x, y, f, j, k, n)    N( y, f, j, k, n)

Proof of Theorem ennnfonelemjn
StepHypRef Expression
1 nnuz 9583 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 0p1e1 9053 . . . . 5  |-  ( 0  +  1 )  =  1
32fveq2i 5534 . . . 4  |-  ( ZZ>= `  ( 0  +  1 ) )  =  (
ZZ>= `  1 )
41, 3eqtr4i 2213 . . 3  |-  NN  =  ( ZZ>= `  ( 0  +  1 ) )
54eleq2i 2256 . 2  |-  ( f  e.  NN  <->  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )
6 ennnfonelemh.j . . . 4  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 eqeq1 2196 . . . . 5  |-  ( x  =  f  ->  (
x  =  0  <->  f  =  0 ) )
8 fvoveq1 5915 . . . . 5  |-  ( x  =  f  ->  ( `' N `  ( x  -  1 ) )  =  ( `' N `  ( f  -  1 ) ) )
97, 8ifbieq2d 3573 . . . 4  |-  ( x  =  f  ->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) )  =  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) ) )
10 nnnn0 9203 . . . . 5  |-  ( f  e.  NN  ->  f  e.  NN0 )
1110adantl 277 . . . 4  |-  ( (
ph  /\  f  e.  NN )  ->  f  e. 
NN0 )
12 nnne0 8967 . . . . . . . 8  |-  ( f  e.  NN  ->  f  =/=  0 )
1312neneqd 2381 . . . . . . 7  |-  ( f  e.  NN  ->  -.  f  =  0 )
1413iffalsed 3559 . . . . . 6  |-  ( f  e.  NN  ->  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) )  =  ( `' N `  ( f  -  1 ) ) )
1514adantl 277 . . . . 5  |-  ( (
ph  /\  f  e.  NN )  ->  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) )  =  ( `' N `  ( f  -  1 ) ) )
16 0zd 9285 . . . . . . . 8  |-  ( (
ph  /\  f  e.  NN )  ->  0  e.  ZZ )
17 ennnfonelemh.n . . . . . . . 8  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
1816, 17frec2uzf1od 10426 . . . . . . 7  |-  ( (
ph  /\  f  e.  NN )  ->  N : om
-1-1-onto-> ( ZZ>= `  0 )
)
19 f1ocnv 5490 . . . . . . 7  |-  ( N : om -1-1-onto-> ( ZZ>= `  0 )  ->  `' N : ( ZZ>= ` 
0 ) -1-1-onto-> om )
20 f1of 5477 . . . . . . 7  |-  ( `' N : ( ZZ>= ` 
0 ) -1-1-onto-> om  ->  `' N : ( ZZ>= `  0
) --> om )
2118, 19, 203syl 17 . . . . . 6  |-  ( (
ph  /\  f  e.  NN )  ->  `' N : ( ZZ>= `  0
) --> om )
22 0z 9284 . . . . . . 7  |-  0  e.  ZZ
235biimpi 120 . . . . . . . 8  |-  ( f  e.  NN  ->  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )
2423adantl 277 . . . . . . 7  |-  ( (
ph  /\  f  e.  NN )  ->  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )
25 eluzp1m1 9571 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  -> 
( f  -  1 )  e.  ( ZZ>= ` 
0 ) )
2622, 24, 25sylancr 414 . . . . . 6  |-  ( (
ph  /\  f  e.  NN )  ->  ( f  -  1 )  e.  ( ZZ>= `  0 )
)
2721, 26ffvelcdmd 5669 . . . . 5  |-  ( (
ph  /\  f  e.  NN )  ->  ( `' N `  ( f  -  1 ) )  e.  om )
2815, 27eqeltrd 2266 . . . 4  |-  ( (
ph  /\  f  e.  NN )  ->  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) )  e. 
om )
296, 9, 11, 28fvmptd3 5626 . . 3  |-  ( (
ph  /\  f  e.  NN )  ->  ( J `
 f )  =  if ( f  =  0 ,  (/) ,  ( `' N `  ( f  -  1 ) ) ) )
3029, 28eqeltrd 2266 . 2  |-  ( (
ph  /\  f  e.  NN )  ->  ( J `
 f )  e. 
om )
315, 30sylan2br 288 1  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2160    =/= wne 2360   A.wral 2468   E.wrex 2469    u. cun 3142   (/)c0 3437   ifcif 3549   {csn 3607   <.cop 3610    |-> cmpt 4079   suc csuc 4380   omcom 4604   `'ccnv 4640   dom cdm 4641   "cima 4644   -->wf 5228   -onto->wfo 5230   -1-1-onto->wf1o 5231   ` cfv 5232  (class class class)co 5892    e. cmpo 5894  freccfrec 6410    ^pm cpm 6668   0cc0 7831   1c1 7832    + caddc 7834    - cmin 8148   NNcn 8939   NN0cn0 9196   ZZcz 9273   ZZ>=cuz 9548    seqcseq 10465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7922  ax-resscn 7923  ax-1cn 7924  ax-1re 7925  ax-icn 7926  ax-addcl 7927  ax-addrcl 7928  ax-mulcl 7929  ax-addcom 7931  ax-addass 7933  ax-distr 7935  ax-i2m1 7936  ax-0lt1 7937  ax-0id 7939  ax-rnegex 7940  ax-cnre 7942  ax-pre-ltirr 7943  ax-pre-ltwlin 7944  ax-pre-lttrn 7945  ax-pre-ltadd 7947
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-recs 6325  df-frec 6411  df-pnf 8014  df-mnf 8015  df-xr 8016  df-ltxr 8017  df-le 8018  df-sub 8150  df-neg 8151  df-inn 8940  df-n0 9197  df-z 9274  df-uz 9549
This theorem is referenced by:  ennnfonelemh  12430  ennnfonelem0  12431  ennnfonelemp1  12432  ennnfonelemom  12434
  Copyright terms: Public domain W3C validator