ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcomf Unicode version

Theorem lcomf 14089
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
lcomf.f  |-  F  =  (Scalar `  W )
lcomf.k  |-  K  =  ( Base `  F
)
lcomf.s  |-  .x.  =  ( .s `  W )
lcomf.b  |-  B  =  ( Base `  W
)
lcomf.w  |-  ( ph  ->  W  e.  LMod )
lcomf.g  |-  ( ph  ->  G : I --> K )
lcomf.h  |-  ( ph  ->  H : I --> B )
lcomf.i  |-  ( ph  ->  I  e.  V )
Assertion
Ref Expression
lcomf  |-  ( ph  ->  ( G  oF  .x.  H ) : I --> B )

Proof of Theorem lcomf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcomf.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 lcomf.b . . . . 5  |-  B  =  ( Base `  W
)
3 lcomf.f . . . . 5  |-  F  =  (Scalar `  W )
4 lcomf.s . . . . 5  |-  .x.  =  ( .s `  W )
5 lcomf.k . . . . 5  |-  K  =  ( Base `  F
)
62, 3, 4, 5lmodvscl 14067 . . . 4  |-  ( ( W  e.  LMod  /\  x  e.  K  /\  y  e.  B )  ->  (
x  .x.  y )  e.  B )
763expb 1207 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  K  /\  y  e.  B )
)  ->  ( x  .x.  y )  e.  B
)
81, 7sylan 283 . 2  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  B ) )  -> 
( x  .x.  y
)  e.  B )
9 lcomf.g . 2  |-  ( ph  ->  G : I --> K )
10 lcomf.h . 2  |-  ( ph  ->  H : I --> B )
11 lcomf.i . 2  |-  ( ph  ->  I  e.  V )
12 inidm 3382 . 2  |-  ( I  i^i  I )  =  I
138, 9, 10, 11, 11, 12off 6171 1  |-  ( ph  ->  ( G  oF  .x.  H ) : I --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   -->wf 5267   ` cfv 5271  (class class class)co 5944    oFcof 6156   Basecbs 12832  Scalarcsca 12912   .scvsca 12913   LModclmod 14049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-lmod 14051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator