ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcomf Unicode version

Theorem lcomf 14291
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
lcomf.f  |-  F  =  (Scalar `  W )
lcomf.k  |-  K  =  ( Base `  F
)
lcomf.s  |-  .x.  =  ( .s `  W )
lcomf.b  |-  B  =  ( Base `  W
)
lcomf.w  |-  ( ph  ->  W  e.  LMod )
lcomf.g  |-  ( ph  ->  G : I --> K )
lcomf.h  |-  ( ph  ->  H : I --> B )
lcomf.i  |-  ( ph  ->  I  e.  V )
Assertion
Ref Expression
lcomf  |-  ( ph  ->  ( G  oF  .x.  H ) : I --> B )

Proof of Theorem lcomf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcomf.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 lcomf.b . . . . 5  |-  B  =  ( Base `  W
)
3 lcomf.f . . . . 5  |-  F  =  (Scalar `  W )
4 lcomf.s . . . . 5  |-  .x.  =  ( .s `  W )
5 lcomf.k . . . . 5  |-  K  =  ( Base `  F
)
62, 3, 4, 5lmodvscl 14269 . . . 4  |-  ( ( W  e.  LMod  /\  x  e.  K  /\  y  e.  B )  ->  (
x  .x.  y )  e.  B )
763expb 1228 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  K  /\  y  e.  B )
)  ->  ( x  .x.  y )  e.  B
)
81, 7sylan 283 . 2  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  B ) )  -> 
( x  .x.  y
)  e.  B )
9 lcomf.g . 2  |-  ( ph  ->  G : I --> K )
10 lcomf.h . 2  |-  ( ph  ->  H : I --> B )
11 lcomf.i . 2  |-  ( ph  ->  I  e.  V )
12 inidm 3413 . 2  |-  ( I  i^i  I )  =  I
138, 9, 10, 11, 11, 12off 6231 1  |-  ( ph  ->  ( G  oF  .x.  H ) : I --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   -->wf 5314   ` cfv 5318  (class class class)co 6001    oFcof 6216   Basecbs 13032  Scalarcsca 13113   .scvsca 13114   LModclmod 14251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mulr 13124  df-sca 13126  df-vsca 13127  df-lmod 14253
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator