| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lcomf | GIF version | ||
| Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| lcomf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lcomf.k | ⊢ 𝐾 = (Base‘𝐹) |
| lcomf.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lcomf.b | ⊢ 𝐵 = (Base‘𝑊) |
| lcomf.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lcomf.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) |
| lcomf.h | ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) |
| lcomf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lcomf | ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐻):𝐼⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcomf.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lcomf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | lcomf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | lcomf.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | lcomf.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | 2, 3, 4, 5 | lmodvscl 14137 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
| 7 | 6 | 3expb 1207 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
| 8 | 1, 7 | sylan 283 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
| 9 | lcomf.g | . 2 ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) | |
| 10 | lcomf.h | . 2 ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) | |
| 11 | lcomf.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 12 | inidm 3386 | . 2 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
| 13 | 8, 9, 10, 11, 11, 12 | off 6183 | 1 ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐻):𝐼⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ⟶wf 5275 ‘cfv 5279 (class class class)co 5956 ∘𝑓 cof 6168 Basecbs 12902 Scalarcsca 12982 ·𝑠 cvsca 12983 LModclmod 14119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1re 8034 ax-addrcl 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-of 6170 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-5 9113 df-6 9114 df-ndx 12905 df-slot 12906 df-base 12908 df-plusg 12992 df-mulr 12993 df-sca 12995 df-vsca 12996 df-lmod 14121 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |