ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcomf GIF version

Theorem lcomf 13826
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
lcomf.f 𝐹 = (Scalar‘𝑊)
lcomf.k 𝐾 = (Base‘𝐹)
lcomf.s · = ( ·𝑠𝑊)
lcomf.b 𝐵 = (Base‘𝑊)
lcomf.w (𝜑𝑊 ∈ LMod)
lcomf.g (𝜑𝐺:𝐼𝐾)
lcomf.h (𝜑𝐻:𝐼𝐵)
lcomf.i (𝜑𝐼𝑉)
Assertion
Ref Expression
lcomf (𝜑 → (𝐺𝑓 · 𝐻):𝐼𝐵)

Proof of Theorem lcomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcomf.w . . 3 (𝜑𝑊 ∈ LMod)
2 lcomf.b . . . . 5 𝐵 = (Base‘𝑊)
3 lcomf.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 lcomf.s . . . . 5 · = ( ·𝑠𝑊)
5 lcomf.k . . . . 5 𝐾 = (Base‘𝐹)
62, 3, 4, 5lmodvscl 13804 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥𝐾𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
763expb 1206 . . 3 ((𝑊 ∈ LMod ∧ (𝑥𝐾𝑦𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
81, 7sylan 283 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
9 lcomf.g . 2 (𝜑𝐺:𝐼𝐾)
10 lcomf.h . 2 (𝜑𝐻:𝐼𝐵)
11 lcomf.i . 2 (𝜑𝐼𝑉)
12 inidm 3369 . 2 (𝐼𝐼) = 𝐼
138, 9, 10, 11, 11, 12off 6145 1 (𝜑 → (𝐺𝑓 · 𝐻):𝐼𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wf 5251  cfv 5255  (class class class)co 5919  𝑓 cof 6130  Basecbs 12621  Scalarcsca 12701   ·𝑠 cvsca 12702  LModclmod 13786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-lmod 13788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator