ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcomf GIF version

Theorem lcomf 14299
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
lcomf.f 𝐹 = (Scalar‘𝑊)
lcomf.k 𝐾 = (Base‘𝐹)
lcomf.s · = ( ·𝑠𝑊)
lcomf.b 𝐵 = (Base‘𝑊)
lcomf.w (𝜑𝑊 ∈ LMod)
lcomf.g (𝜑𝐺:𝐼𝐾)
lcomf.h (𝜑𝐻:𝐼𝐵)
lcomf.i (𝜑𝐼𝑉)
Assertion
Ref Expression
lcomf (𝜑 → (𝐺𝑓 · 𝐻):𝐼𝐵)

Proof of Theorem lcomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcomf.w . . 3 (𝜑𝑊 ∈ LMod)
2 lcomf.b . . . . 5 𝐵 = (Base‘𝑊)
3 lcomf.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 lcomf.s . . . . 5 · = ( ·𝑠𝑊)
5 lcomf.k . . . . 5 𝐾 = (Base‘𝐹)
62, 3, 4, 5lmodvscl 14277 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥𝐾𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
763expb 1228 . . 3 ((𝑊 ∈ LMod ∧ (𝑥𝐾𝑦𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
81, 7sylan 283 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
9 lcomf.g . 2 (𝜑𝐺:𝐼𝐾)
10 lcomf.h . 2 (𝜑𝐻:𝐼𝐵)
11 lcomf.i . 2 (𝜑𝐼𝑉)
12 inidm 3413 . 2 (𝐼𝐼) = 𝐼
138, 9, 10, 11, 11, 12off 6237 1 (𝜑 → (𝐺𝑓 · 𝐻):𝐼𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wf 5314  cfv 5318  (class class class)co 6007  𝑓 cof 6222  Basecbs 13040  Scalarcsca 13121   ·𝑠 cvsca 13122  LModclmod 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-lmod 14261
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator