ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcomf GIF version

Theorem lcomf 14159
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
lcomf.f 𝐹 = (Scalar‘𝑊)
lcomf.k 𝐾 = (Base‘𝐹)
lcomf.s · = ( ·𝑠𝑊)
lcomf.b 𝐵 = (Base‘𝑊)
lcomf.w (𝜑𝑊 ∈ LMod)
lcomf.g (𝜑𝐺:𝐼𝐾)
lcomf.h (𝜑𝐻:𝐼𝐵)
lcomf.i (𝜑𝐼𝑉)
Assertion
Ref Expression
lcomf (𝜑 → (𝐺𝑓 · 𝐻):𝐼𝐵)

Proof of Theorem lcomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcomf.w . . 3 (𝜑𝑊 ∈ LMod)
2 lcomf.b . . . . 5 𝐵 = (Base‘𝑊)
3 lcomf.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 lcomf.s . . . . 5 · = ( ·𝑠𝑊)
5 lcomf.k . . . . 5 𝐾 = (Base‘𝐹)
62, 3, 4, 5lmodvscl 14137 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥𝐾𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
763expb 1207 . . 3 ((𝑊 ∈ LMod ∧ (𝑥𝐾𝑦𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
81, 7sylan 283 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
9 lcomf.g . 2 (𝜑𝐺:𝐼𝐾)
10 lcomf.h . 2 (𝜑𝐻:𝐼𝐵)
11 lcomf.i . 2 (𝜑𝐼𝑉)
12 inidm 3386 . 2 (𝐼𝐼) = 𝐼
138, 9, 10, 11, 11, 12off 6183 1 (𝜑 → (𝐺𝑓 · 𝐻):𝐼𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wf 5275  cfv 5279  (class class class)co 5956  𝑓 cof 6168  Basecbs 12902  Scalarcsca 12982   ·𝑠 cvsca 12983  LModclmod 14119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1re 8034  ax-addrcl 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-of 6170  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-5 9113  df-6 9114  df-ndx 12905  df-slot 12906  df-base 12908  df-plusg 12992  df-mulr 12993  df-sca 12995  df-vsca 12996  df-lmod 14121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator