![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lcomf | GIF version |
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
lcomf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lcomf.k | ⊢ 𝐾 = (Base‘𝐹) |
lcomf.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lcomf.b | ⊢ 𝐵 = (Base‘𝑊) |
lcomf.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lcomf.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) |
lcomf.h | ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) |
lcomf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
Ref | Expression |
---|---|
lcomf | ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐻):𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcomf.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lcomf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | lcomf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | lcomf.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | lcomf.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
6 | 2, 3, 4, 5 | lmodvscl 13779 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
7 | 6 | 3expb 1206 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
8 | 1, 7 | sylan 283 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
9 | lcomf.g | . 2 ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) | |
10 | lcomf.h | . 2 ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) | |
11 | lcomf.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
12 | inidm 3368 | . 2 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
13 | 8, 9, 10, 11, 11, 12 | off 6135 | 1 ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐻):𝐼⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ⟶wf 5242 ‘cfv 5246 (class class class)co 5910 ∘𝑓 cof 6120 Basecbs 12605 Scalarcsca 12685 ·𝑠 cvsca 12686 LModclmod 13761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-cnex 7953 ax-resscn 7954 ax-1re 7956 ax-addrcl 7959 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-res 4667 df-ima 4668 df-iota 5207 df-fun 5248 df-fn 5249 df-f 5250 df-f1 5251 df-fo 5252 df-f1o 5253 df-fv 5254 df-ov 5913 df-oprab 5914 df-mpo 5915 df-of 6122 df-inn 8973 df-2 9031 df-3 9032 df-4 9033 df-5 9034 df-6 9035 df-ndx 12608 df-slot 12609 df-base 12611 df-plusg 12695 df-mulr 12696 df-sca 12698 df-vsca 12699 df-lmod 13763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |