ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemqsumk Unicode version

Theorem seq3f1olemqsumk 10265
Description: Lemma for seq3f1o 10270. 
Q gives the same sum as 
J in the range  ( K ... N ). (Contributed by Jim Kingdon, 22-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqf1o.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
iseqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
iseqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1o.6  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1o.7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1olemstep.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemstep.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemstep.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
iseqf1olemnk  |-  ( ph  ->  K  =/=  ( `' J `  K ) )
iseqf1olemqres.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemqsumk.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
seq3f1olemqsumk  |-  ( ph  ->  (  seq K ( 
.+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq K ( 
.+  ,  [_ Q  /  f ]_ P
) `  N )
)
Distinct variable groups:    u, J    u, K, x    u, M, x   
u, N    x, J    x, Q    ph, x    x,  .+ , y, z    f, G, x   
f, J, y, z   
y, K, z    f, M    f, N, x, y, z    x, P, y, z    Q, f, y, z   
x, S, y, z    ph, u    ph, y, z
Allowed substitution hints:    ph( f)    P( u, f)    .+ ( u, f)    Q( u)    S( u, f)    F( x, y, z, u, f)    G( y, z, u)    K( f)    M( y, z)

Proof of Theorem seq3f1olemqsumk
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 iseqf1o.1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2 iseqf1o.2 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
3 iseqf1o.3 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
4 iseqf1o.4 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 iseqf1o.6 . . . . . 6  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
6 iseqf1o.7 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
7 iseqf1olemstep.k . . . . . 6  |-  ( ph  ->  K  e.  ( M ... N ) )
8 iseqf1olemstep.j . . . . . 6  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
9 iseqf1olemstep.const . . . . . 6  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
10 iseqf1olemnk . . . . . 6  |-  ( ph  ->  K  =/=  ( `' J `  K ) )
11 iseqf1olemqres.q . . . . . 6  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
12 iseqf1olemqsumk.p . . . . . 6  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12seq3f1olemqsumkj 10264 . . . . 5  |-  ( ph  ->  (  seq K ( 
.+  ,  [_ J  /  f ]_ P
) `  ( `' J `  K )
)  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) ) )
1413adantr 274 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  (  seq K (  .+  ,  [_ J  /  f ]_ P ) `  ( `' J `  K ) )  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) ) )
15 f1ocnv 5373 . . . . . . . . . . . 12  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
168, 15syl 14 . . . . . . . . . . 11  |-  ( ph  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N ) )
17 f1of 5360 . . . . . . . . . . 11  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
1816, 17syl 14 . . . . . . . . . 10  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
1918, 7ffvelrnd 5549 . . . . . . . . 9  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
20 elfzelz 9799 . . . . . . . . 9  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
2119, 20syl 14 . . . . . . . 8  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
2221adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  ( `' J `  K )  e.  ZZ )
2322peano2zd 9169 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  (
( `' J `  K )  +  1 )  e.  ZZ )
24 elfzel2 9797 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
257, 24syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
2625adantr 274 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  N  e.  ZZ )
27 simpr 109 . . . . . . 7  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  ( `' J `  K )  <  N )
28 zltp1le 9101 . . . . . . . 8  |-  ( ( ( `' J `  K )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( `' J `  K )  <  N  <->  ( ( `' J `  K )  +  1 )  <_  N ) )
2922, 26, 28syl2anc 408 . . . . . . 7  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  (
( `' J `  K )  <  N  <->  ( ( `' J `  K )  +  1 )  <_  N )
)
3027, 29mpbid 146 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  (
( `' J `  K )  +  1 )  <_  N )
31 eluz2 9325 . . . . . 6  |-  ( N  e.  ( ZZ>= `  (
( `' J `  K )  +  1 ) )  <->  ( (
( `' J `  K )  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  (
( `' J `  K )  +  1 )  <_  N )
)
3223, 26, 30, 31syl3anbrc 1165 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  N  e.  ( ZZ>= `  ( ( `' J `  K )  +  1 ) ) )
337ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  K  e.  ( M ... N ) )
348ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  J :
( M ... N
)
-1-1-onto-> ( M ... N ) )
35 elfzel1 9798 . . . . . . . . . . . . 13  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
367, 35syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
3736ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  M  e.  ZZ )
3833, 24syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  N  e.  ZZ )
39 elfzelz 9799 . . . . . . . . . . . 12  |-  ( v  e.  ( ( ( `' J `  K )  +  1 ) ... N )  ->  v  e.  ZZ )
4039adantl 275 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  v  e.  ZZ )
4137, 38, 403jca 1161 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  v  e.  ZZ ) )
4236zred 9166 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  RR )
4342ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  M  e.  RR )
4421zred 9166 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' J `  K )  e.  RR )
45 peano2re 7891 . . . . . . . . . . . . . 14  |-  ( ( `' J `  K )  e.  RR  ->  (
( `' J `  K )  +  1 )  e.  RR )
4644, 45syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( `' J `  K )  +  1 )  e.  RR )
4746ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  ( ( `' J `  K )  +  1 )  e.  RR )
4840zred 9166 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  v  e.  RR )
49 elfzelz 9799 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
507, 49syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  K  e.  ZZ )
5150zred 9166 . . . . . . . . . . . . . . 15  |-  ( ph  ->  K  e.  RR )
52 elfzle1 9800 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( M ... N )  ->  M  <_  K )
537, 52syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  <_  K )
544, 7, 8, 9iseqf1olemkle 10250 . . . . . . . . . . . . . . 15  |-  ( ph  ->  K  <_  ( `' J `  K )
)
5542, 51, 44, 53, 54letrd 7879 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  <_  ( `' J `  K )
)
5644lep1d 8682 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' J `  K )  <_  (
( `' J `  K )  +  1 ) )
5742, 44, 46, 55, 56letrd 7879 . . . . . . . . . . . . 13  |-  ( ph  ->  M  <_  ( ( `' J `  K )  +  1 ) )
5857ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  M  <_  ( ( `' J `  K )  +  1 ) )
59 elfzle1 9800 . . . . . . . . . . . . 13  |-  ( v  e.  ( ( ( `' J `  K )  +  1 ) ... N )  ->  (
( `' J `  K )  +  1 )  <_  v )
6059adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  ( ( `' J `  K )  +  1 )  <_ 
v )
6143, 47, 48, 58, 60letrd 7879 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  M  <_  v )
62 elfzle2 9801 . . . . . . . . . . . 12  |-  ( v  e.  ( ( ( `' J `  K )  +  1 ) ... N )  ->  v  <_  N )
6362adantl 275 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  v  <_  N )
6461, 63jca 304 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  ( M  <_  v  /\  v  <_  N ) )
65 elfz2 9790 . . . . . . . . . 10  |-  ( v  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  v  e.  ZZ )  /\  ( M  <_  v  /\  v  <_  N ) ) )
6641, 64, 65sylanbrc 413 . . . . . . . . 9  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  v  e.  ( M ... N ) )
6733, 34, 66, 11iseqf1olemqval 10253 . . . . . . . 8  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  ( Q `  v )  =  if ( v  e.  ( K ... ( `' J `  K ) ) ,  if ( v  =  K ,  K ,  ( J `  ( v  -  1 ) ) ) ,  ( J `  v
) ) )
6844ad3antrrr 483 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  /\  v  e.  ( K ... ( `' J `  K ) ) )  ->  ( `' J `  K )  e.  RR )
6968, 45syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  /\  v  e.  ( K ... ( `' J `  K ) ) )  ->  (
( `' J `  K )  +  1 )  e.  RR )
7048adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  /\  v  e.  ( K ... ( `' J `  K ) ) )  ->  v  e.  RR )
7168ltp1d 8681 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  /\  v  e.  ( K ... ( `' J `  K ) ) )  ->  ( `' J `  K )  <  ( ( `' J `  K )  +  1 ) )
7260adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  /\  v  e.  ( K ... ( `' J `  K ) ) )  ->  (
( `' J `  K )  +  1 )  <_  v )
7368, 69, 70, 71, 72ltletrd 8178 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  /\  v  e.  ( K ... ( `' J `  K ) ) )  ->  ( `' J `  K )  <  v )
74 elfzle2 9801 . . . . . . . . . . . 12  |-  ( v  e.  ( K ... ( `' J `  K ) )  ->  v  <_  ( `' J `  K ) )
7574adantl 275 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  /\  v  e.  ( K ... ( `' J `  K ) ) )  ->  v  <_  ( `' J `  K ) )
7670, 68, 75lensymd 7877 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  /\  v  e.  ( K ... ( `' J `  K ) ) )  ->  -.  ( `' J `  K )  <  v )
7773, 76pm2.65da 650 . . . . . . . . 9  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  -.  v  e.  ( K ... ( `' J `  K ) ) )
7877iffalsed 3479 . . . . . . . 8  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  if (
v  e.  ( K ... ( `' J `  K ) ) ,  if ( v  =  K ,  K , 
( J `  (
v  -  1 ) ) ) ,  ( J `  v ) )  =  ( J `
 v ) )
7967, 78eqtrd 2170 . . . . . . 7  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  ( Q `  v )  =  ( J `  v ) )
8079fveq2d 5418 . . . . . 6  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  ( G `  ( Q `  v
) )  =  ( G `  ( J `
 v ) ) )
8133, 34, 11iseqf1olemqf1o 10259 . . . . . . 7  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  Q :
( M ... N
)
-1-1-onto-> ( M ... N ) )
826ralrimiva 2503 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
8382ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  A. x  e.  ( ZZ>= `  M )
( G `  x
)  e.  S )
8483r19.21bi 2518 . . . . . . 7  |-  ( ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
8533, 81, 66, 84, 12iseqf1olemfvp 10263 . . . . . 6  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  ( [_ Q  /  f ]_ P `  v )  =  ( G `  ( Q `
 v ) ) )
8633, 34, 66, 84, 12iseqf1olemfvp 10263 . . . . . 6  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  ( [_ J  /  f ]_ P `  v )  =  ( G `  ( J `
 v ) ) )
8780, 85, 863eqtr4rd 2181 . . . . 5  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  v  e.  ( (
( `' J `  K )  +  1 ) ... N ) )  ->  ( [_ J  /  f ]_ P `  v )  =  (
[_ Q  /  f ]_ P `  v ) )
8836ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  ( ( `' J `  K )  +  1 ) ) )  ->  M  e.  ZZ )
89 eluzelz 9328 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  (
( `' J `  K )  +  1 ) )  ->  x  e.  ZZ )
9089adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  ( ( `' J `  K )  +  1 ) ) )  ->  x  e.  ZZ )
9142ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  ( ( `' J `  K )  +  1 ) ) )  ->  M  e.  RR )
9246ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  ( ( `' J `  K )  +  1 ) ) )  -> 
( ( `' J `  K )  +  1 )  e.  RR )
9390zred 9166 . . . . . . . 8  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  ( ( `' J `  K )  +  1 ) ) )  ->  x  e.  RR )
9457ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  ( ( `' J `  K )  +  1 ) ) )  ->  M  <_  ( ( `' J `  K )  +  1 ) )
95 eluzle 9331 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  (
( `' J `  K )  +  1 ) )  ->  (
( `' J `  K )  +  1 )  <_  x )
9695adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  ( ( `' J `  K )  +  1 ) ) )  -> 
( ( `' J `  K )  +  1 )  <_  x )
9791, 92, 93, 94, 96letrd 7879 . . . . . . 7  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  ( ( `' J `  K )  +  1 ) ) )  ->  M  <_  x )
98 eluz2 9325 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) )
9988, 90, 97, 98syl3anbrc 1165 . . . . . 6  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  ( ( `' J `  K )  +  1 ) ) )  ->  x  e.  ( ZZ>= `  M ) )
1007adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  K  e.  ( M ... N
) )
1018adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
1026adantlr 468 . . . . . . 7  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  M ) )  -> 
( G `  x
)  e.  S )
103100, 101, 11, 102, 12iseqf1olemjpcl 10261 . . . . . 6  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  M ) )  -> 
( [_ J  /  f ]_ P `  x )  e.  S )
10499, 103syldan 280 . . . . 5  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  ( ( `' J `  K )  +  1 ) ) )  -> 
( [_ J  /  f ]_ P `  x )  e.  S )
1057, 8, 11, 6, 12iseqf1olemqpcl 10262 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ Q  /  f ]_ P `  x )  e.  S
)
106105adantlr 468 . . . . . 6  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  M ) )  -> 
( [_ Q  /  f ]_ P `  x )  e.  S )
10799, 106syldan 280 . . . . 5  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  ( ( `' J `  K )  +  1 ) ) )  -> 
( [_ Q  /  f ]_ P `  x )  e.  S )
1081adantlr 468 . . . . 5  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x  .+  y )  e.  S )
10932, 87, 104, 107, 108seq3fveq 10237 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  (  seq ( ( `' J `  K )  +  1 ) (  .+  ,  [_ J  /  f ]_ P ) `  N
)  =  (  seq ( ( `' J `  K )  +  1 ) (  .+  ,  [_ Q  /  f ]_ P ) `  N
) )
11014, 109oveq12d 5785 . . 3  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  (
(  seq K (  .+  ,  [_ J  /  f ]_ P ) `  ( `' J `  K ) )  .+  (  seq ( ( `' J `  K )  +  1 ) (  .+  ,  [_ J  /  f ]_ P ) `  N
) )  =  ( (  seq K ( 
.+  ,  [_ Q  /  f ]_ P
) `  ( `' J `  K )
)  .+  (  seq ( ( `' J `  K )  +  1 ) (  .+  ,  [_ Q  /  f ]_ P ) `  N
) ) )
1113adantlr 468 . . . 4  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
112 eluz2 9325 . . . . . 6  |-  ( ( `' J `  K )  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ  /\  K  <_  ( `' J `  K ) ) )
11350, 21, 54, 112syl3anbrc 1165 . . . . 5  |-  ( ph  ->  ( `' J `  K )  e.  (
ZZ>= `  K ) )
114113adantr 274 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  ( `' J `  K )  e.  ( ZZ>= `  K
) )
115 simpr 109 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  x  e.  ( ZZ>= `  K )
)
1167adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  K  e.  ( M ... N ) )
117 elfzuz 9795 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
118116, 117syl 14 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  K  e.  ( ZZ>= `  M )
)
119 uztrn 9335 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
120115, 118, 119syl2anc 408 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  x  e.  ( ZZ>= `  M )
)
1217, 8, 11, 6, 12iseqf1olemjpcl 10261 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ J  /  f ]_ P `  x )  e.  S
)
122120, 121syldan 280 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( [_ J  /  f ]_ P `  x )  e.  S
)
123122adantlr 468 . . . 4  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  K ) )  -> 
( [_ J  /  f ]_ P `  x )  e.  S )
124108, 111, 32, 114, 123seq3split 10245 . . 3  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  (  seq K (  .+  ,  [_ J  /  f ]_ P ) `  N
)  =  ( (  seq K (  .+  ,  [_ J  /  f ]_ P ) `  ( `' J `  K ) )  .+  (  seq ( ( `' J `  K )  +  1 ) (  .+  ,  [_ J  /  f ]_ P ) `  N
) ) )
125120, 105syldan 280 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( [_ Q  /  f ]_ P `  x )  e.  S
)
126125adantlr 468 . . . 4  |-  ( ( ( ph  /\  ( `' J `  K )  <  N )  /\  x  e.  ( ZZ>= `  K ) )  -> 
( [_ Q  /  f ]_ P `  x )  e.  S )
127108, 111, 32, 114, 126seq3split 10245 . . 3  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  N
)  =  ( (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) )  .+  (  seq ( ( `' J `  K )  +  1 ) (  .+  ,  [_ Q  /  f ]_ P ) `  N
) ) )
128110, 124, 1273eqtr4d 2180 . 2  |-  ( (
ph  /\  ( `' J `  K )  <  N )  ->  (  seq K (  .+  ,  [_ J  /  f ]_ P ) `  N
)  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  N
) )
12913adantr 274 . . 3  |-  ( (
ph  /\  ( `' J `  K )  =  N )  ->  (  seq K (  .+  ,  [_ J  /  f ]_ P ) `  ( `' J `  K ) )  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) ) )
130 simpr 109 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  =  N )  ->  ( `' J `  K )  =  N )
131130fveq2d 5418 . . 3  |-  ( (
ph  /\  ( `' J `  K )  =  N )  ->  (  seq K (  .+  ,  [_ J  /  f ]_ P ) `  ( `' J `  K ) )  =  (  seq K (  .+  ,  [_ J  /  f ]_ P ) `  N
) )
132130fveq2d 5418 . . 3  |-  ( (
ph  /\  ( `' J `  K )  =  N )  ->  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) )  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  N
) )
133129, 131, 1323eqtr3d 2178 . 2  |-  ( (
ph  /\  ( `' J `  K )  =  N )  ->  (  seq K (  .+  ,  [_ J  /  f ]_ P ) `  N
)  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  N
) )
134 elfzle2 9801 . . . 4  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  <_  N )
13519, 134syl 14 . . 3  |-  ( ph  ->  ( `' J `  K )  <_  N
)
136 zleloe 9094 . . . 4  |-  ( ( ( `' J `  K )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( `' J `  K )  <_  N  <->  ( ( `' J `  K )  <  N  \/  ( `' J `  K )  =  N ) ) )
13721, 25, 136syl2anc 408 . . 3  |-  ( ph  ->  ( ( `' J `  K )  <_  N  <->  ( ( `' J `  K )  <  N  \/  ( `' J `  K )  =  N ) ) )
138135, 137mpbid 146 . 2  |-  ( ph  ->  ( ( `' J `  K )  <  N  \/  ( `' J `  K )  =  N ) )
139128, 133, 138mpjaodan 787 1  |-  ( ph  ->  (  seq K ( 
.+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq K ( 
.+  ,  [_ Q  /  f ]_ P
) `  N )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480    =/= wne 2306   A.wral 2414   [_csb 2998   ifcif 3469   class class class wbr 3924    |-> cmpt 3984   `'ccnv 4533   -->wf 5114   -1-1-onto->wf1o 5117   ` cfv 5118  (class class class)co 5767   RRcr 7612   1c1 7614    + caddc 7616    < clt 7793    <_ cle 7794    - cmin 7926   ZZcz 9047   ZZ>=cuz 9319   ...cfz 9783  ..^cfzo 9912    seqcseq 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-1o 6306  df-er 6422  df-en 6628  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-fzo 9913  df-seqfrec 10212
This theorem is referenced by:  seq3f1olemqsum  10266
  Copyright terms: Public domain W3C validator