| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lensymd | GIF version | ||
| Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 8163 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbid 147 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 < clt 8080 ≤ cle 8081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-xr 8084 df-le 8086 |
| This theorem is referenced by: lbinf 8994 suprzubdc 10345 zsupssdc 10347 addmodlteq 10509 iseqf1olemab 10613 seq3f1olemqsumk 10623 seq3f1olemqsum 10624 seqf1oglem1 10630 seqf1oglem2 10631 nn0ltexp2 10820 zfz1isolemiso 10950 seq3coll 10953 maxleim 11389 maxabslemval 11392 cvgratz 11716 divalglemnqt 12104 bezoutlemsup 12203 dfgcd2 12208 nninfctlemfo 12234 lcmgcdlem 12272 4sqlem11 12597 gsumfzval 13095 lgsval2lem 15359 trilpolemgt1 15796 trilpolemlt1 15798 |
| Copyright terms: Public domain | W3C validator |