Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lensymd | GIF version |
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 2, 3 | lenltd 8012 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
5 | 1, 4 | mpbid 146 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2136 class class class wbr 3981 ℝcr 7748 < clt 7929 ≤ cle 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-xr 7933 df-le 7935 |
This theorem is referenced by: lbinf 8839 addmodlteq 10329 iseqf1olemab 10420 seq3f1olemqsumk 10430 seq3f1olemqsum 10431 nn0ltexp2 10619 zfz1isolemiso 10748 seq3coll 10751 maxleim 11143 maxabslemval 11146 cvgratz 11469 divalglemnqt 11853 suprzubdc 11881 zsupssdc 11883 bezoutlemsup 11938 dfgcd2 11943 lcmgcdlem 12005 lgsval2lem 13511 trilpolemgt1 13878 trilpolemlt1 13880 |
Copyright terms: Public domain | W3C validator |