ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lensymd GIF version

Theorem lensymd 7755
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
lensymd.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
lensymd (𝜑 → ¬ 𝐵 < 𝐴)

Proof of Theorem lensymd
StepHypRef Expression
1 lensymd.3 . 2 (𝜑𝐴𝐵)
2 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
42, 3lenltd 7751 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
51, 4mpbid 146 1 (𝜑 → ¬ 𝐵 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 1448   class class class wbr 3875  cr 7499   < clt 7672  cle 7673
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-xp 4483  df-cnv 4485  df-xr 7676  df-le 7678
This theorem is referenced by:  lbinf  8564  addmodlteq  10012  iseqf1olemab  10103  seq3f1olemqsumk  10113  seq3f1olemqsum  10114  zfz1isolemiso  10423  seq3coll  10426  maxleim  10817  maxabslemval  10820  cvgratz  11140  divalglemnqt  11412  bezoutlemsup  11490  dfgcd2  11495  lcmgcdlem  11551  trilpolemgt1  12816  trilpolemlt1  12818
  Copyright terms: Public domain W3C validator