ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lensymd GIF version

Theorem lensymd 8193
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
lensymd.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
lensymd (𝜑 → ¬ 𝐵 < 𝐴)

Proof of Theorem lensymd
StepHypRef Expression
1 lensymd.3 . 2 (𝜑𝐴𝐵)
2 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
42, 3lenltd 8189 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
51, 4mpbid 147 1 (𝜑 → ¬ 𝐵 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2175   class class class wbr 4043  cr 7923   < clt 8106  cle 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-xr 8110  df-le 8112
This theorem is referenced by:  lbinf  9020  suprzubdc  10377  zsupssdc  10379  addmodlteq  10541  iseqf1olemab  10645  seq3f1olemqsumk  10655  seq3f1olemqsum  10656  seqf1oglem1  10662  seqf1oglem2  10663  nn0ltexp2  10852  zfz1isolemiso  10982  seq3coll  10985  maxleim  11458  maxabslemval  11461  cvgratz  11785  divalglemnqt  12173  bezoutlemsup  12272  dfgcd2  12277  nninfctlemfo  12303  lcmgcdlem  12341  4sqlem11  12666  gsumfzval  13165  lgsval2lem  15429  trilpolemgt1  15911  trilpolemlt1  15913
  Copyright terms: Public domain W3C validator