ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapval2 GIF version

Theorem mapval2 6580
Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.)
Hypotheses
Ref Expression
elmap.1 𝐴 ∈ V
elmap.2 𝐵 ∈ V
Assertion
Ref Expression
mapval2 (𝐴𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵})
Distinct variable group:   𝐵,𝑓
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem mapval2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dff2 5572 . . . 4 (𝑔:𝐵𝐴 ↔ (𝑔 Fn 𝐵𝑔 ⊆ (𝐵 × 𝐴)))
2 ancom 264 . . . 4 ((𝑔 Fn 𝐵𝑔 ⊆ (𝐵 × 𝐴)) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
31, 2bitri 183 . . 3 (𝑔:𝐵𝐴 ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
4 elmap.1 . . . 4 𝐴 ∈ V
5 elmap.2 . . . 4 𝐵 ∈ V
64, 5elmap 6579 . . 3 (𝑔 ∈ (𝐴𝑚 𝐵) ↔ 𝑔:𝐵𝐴)
7 elin 3264 . . . 4 (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵}) ↔ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓𝑓 Fn 𝐵}))
8 velpw 3522 . . . . 5 (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑔 ⊆ (𝐵 × 𝐴))
9 vex 2692 . . . . . 6 𝑔 ∈ V
10 fneq1 5219 . . . . . 6 (𝑓 = 𝑔 → (𝑓 Fn 𝐵𝑔 Fn 𝐵))
119, 10elab 2832 . . . . 5 (𝑔 ∈ {𝑓𝑓 Fn 𝐵} ↔ 𝑔 Fn 𝐵)
128, 11anbi12i 456 . . . 4 ((𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
137, 12bitri 183 . . 3 (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
143, 6, 133bitr4i 211 . 2 (𝑔 ∈ (𝐴𝑚 𝐵) ↔ 𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵}))
1514eqriv 2137 1 (𝐴𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵})
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1332  wcel 1481  {cab 2126  Vcvv 2689  cin 3075  wss 3076  𝒫 cpw 3515   × cxp 4545   Fn wfn 5126  wf 5127  (class class class)co 5782  𝑚 cmap 6550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-map 6552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator