Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapval2 GIF version

Theorem mapval2 6538
 Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.)
Hypotheses
Ref Expression
elmap.1 𝐴 ∈ V
elmap.2 𝐵 ∈ V
Assertion
Ref Expression
mapval2 (𝐴𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵})
Distinct variable group:   𝐵,𝑓
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem mapval2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dff2 5530 . . . 4 (𝑔:𝐵𝐴 ↔ (𝑔 Fn 𝐵𝑔 ⊆ (𝐵 × 𝐴)))
2 ancom 264 . . . 4 ((𝑔 Fn 𝐵𝑔 ⊆ (𝐵 × 𝐴)) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
31, 2bitri 183 . . 3 (𝑔:𝐵𝐴 ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
4 elmap.1 . . . 4 𝐴 ∈ V
5 elmap.2 . . . 4 𝐵 ∈ V
64, 5elmap 6537 . . 3 (𝑔 ∈ (𝐴𝑚 𝐵) ↔ 𝑔:𝐵𝐴)
7 elin 3227 . . . 4 (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵}) ↔ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓𝑓 Fn 𝐵}))
8 velpw 3485 . . . . 5 (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑔 ⊆ (𝐵 × 𝐴))
9 vex 2661 . . . . . 6 𝑔 ∈ V
10 fneq1 5179 . . . . . 6 (𝑓 = 𝑔 → (𝑓 Fn 𝐵𝑔 Fn 𝐵))
119, 10elab 2800 . . . . 5 (𝑔 ∈ {𝑓𝑓 Fn 𝐵} ↔ 𝑔 Fn 𝐵)
128, 11anbi12i 453 . . . 4 ((𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
137, 12bitri 183 . . 3 (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
143, 6, 133bitr4i 211 . 2 (𝑔 ∈ (𝐴𝑚 𝐵) ↔ 𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵}))
1514eqriv 2112 1 (𝐴𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵})
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   = wceq 1314   ∈ wcel 1463  {cab 2101  Vcvv 2658   ∩ cin 3038   ⊆ wss 3039  𝒫 cpw 3478   × cxp 4505   Fn wfn 5086  ⟶wf 5087  (class class class)co 5740   ↑𝑚 cmap 6508 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-map 6510 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator