Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapval2 | GIF version |
Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.) |
Ref | Expression |
---|---|
elmap.1 | ⊢ 𝐴 ∈ V |
elmap.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mapval2 | ⊢ (𝐴 ↑𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff2 5629 | . . . 4 ⊢ (𝑔:𝐵⟶𝐴 ↔ (𝑔 Fn 𝐵 ∧ 𝑔 ⊆ (𝐵 × 𝐴))) | |
2 | ancom 264 | . . . 4 ⊢ ((𝑔 Fn 𝐵 ∧ 𝑔 ⊆ (𝐵 × 𝐴)) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) | |
3 | 1, 2 | bitri 183 | . . 3 ⊢ (𝑔:𝐵⟶𝐴 ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
4 | elmap.1 | . . . 4 ⊢ 𝐴 ∈ V | |
5 | elmap.2 | . . . 4 ⊢ 𝐵 ∈ V | |
6 | 4, 5 | elmap 6643 | . . 3 ⊢ (𝑔 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝑔:𝐵⟶𝐴) |
7 | elin 3305 | . . . 4 ⊢ (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵})) | |
8 | velpw 3566 | . . . . 5 ⊢ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑔 ⊆ (𝐵 × 𝐴)) | |
9 | vex 2729 | . . . . . 6 ⊢ 𝑔 ∈ V | |
10 | fneq1 5276 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐵 ↔ 𝑔 Fn 𝐵)) | |
11 | 9, 10 | elab 2870 | . . . . 5 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵} ↔ 𝑔 Fn 𝐵) |
12 | 8, 11 | anbi12i 456 | . . . 4 ⊢ ((𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
13 | 7, 12 | bitri 183 | . . 3 ⊢ (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
14 | 3, 6, 13 | 3bitr4i 211 | . 2 ⊢ (𝑔 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵})) |
15 | 14 | eqriv 2162 | 1 ⊢ (𝐴 ↑𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 {cab 2151 Vcvv 2726 ∩ cin 3115 ⊆ wss 3116 𝒫 cpw 3559 × cxp 4602 Fn wfn 5183 ⟶wf 5184 (class class class)co 5842 ↑𝑚 cmap 6614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-map 6616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |