| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapval2 | GIF version | ||
| Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.) |
| Ref | Expression |
|---|---|
| elmap.1 | ⊢ 𝐴 ∈ V |
| elmap.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mapval2 | ⊢ (𝐴 ↑𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff2 5734 | . . . 4 ⊢ (𝑔:𝐵⟶𝐴 ↔ (𝑔 Fn 𝐵 ∧ 𝑔 ⊆ (𝐵 × 𝐴))) | |
| 2 | ancom 266 | . . . 4 ⊢ ((𝑔 Fn 𝐵 ∧ 𝑔 ⊆ (𝐵 × 𝐴)) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) | |
| 3 | 1, 2 | bitri 184 | . . 3 ⊢ (𝑔:𝐵⟶𝐴 ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
| 4 | elmap.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 5 | elmap.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 6 | 4, 5 | elmap 6774 | . . 3 ⊢ (𝑔 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝑔:𝐵⟶𝐴) |
| 7 | elin 3358 | . . . 4 ⊢ (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵})) | |
| 8 | velpw 3625 | . . . . 5 ⊢ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑔 ⊆ (𝐵 × 𝐴)) | |
| 9 | vex 2776 | . . . . . 6 ⊢ 𝑔 ∈ V | |
| 10 | fneq1 5368 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐵 ↔ 𝑔 Fn 𝐵)) | |
| 11 | 9, 10 | elab 2919 | . . . . 5 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵} ↔ 𝑔 Fn 𝐵) |
| 12 | 8, 11 | anbi12i 460 | . . . 4 ⊢ ((𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
| 13 | 7, 12 | bitri 184 | . . 3 ⊢ (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
| 14 | 3, 6, 13 | 3bitr4i 212 | . 2 ⊢ (𝑔 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵})) |
| 15 | 14 | eqriv 2203 | 1 ⊢ (𝐴 ↑𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 Vcvv 2773 ∩ cin 3167 ⊆ wss 3168 𝒫 cpw 3618 × cxp 4678 Fn wfn 5272 ⟶wf 5273 (class class class)co 5954 ↑𝑚 cmap 6745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-map 6747 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |