ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapval2 GIF version

Theorem mapval2 6696
Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.)
Hypotheses
Ref Expression
elmap.1 𝐴 ∈ V
elmap.2 𝐵 ∈ V
Assertion
Ref Expression
mapval2 (𝐴𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵})
Distinct variable group:   𝐵,𝑓
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem mapval2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dff2 5676 . . . 4 (𝑔:𝐵𝐴 ↔ (𝑔 Fn 𝐵𝑔 ⊆ (𝐵 × 𝐴)))
2 ancom 266 . . . 4 ((𝑔 Fn 𝐵𝑔 ⊆ (𝐵 × 𝐴)) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
31, 2bitri 184 . . 3 (𝑔:𝐵𝐴 ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
4 elmap.1 . . . 4 𝐴 ∈ V
5 elmap.2 . . . 4 𝐵 ∈ V
64, 5elmap 6695 . . 3 (𝑔 ∈ (𝐴𝑚 𝐵) ↔ 𝑔:𝐵𝐴)
7 elin 3333 . . . 4 (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵}) ↔ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓𝑓 Fn 𝐵}))
8 velpw 3597 . . . . 5 (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑔 ⊆ (𝐵 × 𝐴))
9 vex 2755 . . . . . 6 𝑔 ∈ V
10 fneq1 5319 . . . . . 6 (𝑓 = 𝑔 → (𝑓 Fn 𝐵𝑔 Fn 𝐵))
119, 10elab 2896 . . . . 5 (𝑔 ∈ {𝑓𝑓 Fn 𝐵} ↔ 𝑔 Fn 𝐵)
128, 11anbi12i 460 . . . 4 ((𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
137, 12bitri 184 . . 3 (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
143, 6, 133bitr4i 212 . 2 (𝑔 ∈ (𝐴𝑚 𝐵) ↔ 𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵}))
1514eqriv 2186 1 (𝐴𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵})
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2160  {cab 2175  Vcvv 2752  cin 3143  wss 3144  𝒫 cpw 3590   × cxp 4639   Fn wfn 5226  wf 5227  (class class class)co 5891  𝑚 cmap 6666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-map 6668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator