| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapval2 | GIF version | ||
| Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.) |
| Ref | Expression |
|---|---|
| elmap.1 | ⊢ 𝐴 ∈ V |
| elmap.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mapval2 | ⊢ (𝐴 ↑𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff2 5709 | . . . 4 ⊢ (𝑔:𝐵⟶𝐴 ↔ (𝑔 Fn 𝐵 ∧ 𝑔 ⊆ (𝐵 × 𝐴))) | |
| 2 | ancom 266 | . . . 4 ⊢ ((𝑔 Fn 𝐵 ∧ 𝑔 ⊆ (𝐵 × 𝐴)) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) | |
| 3 | 1, 2 | bitri 184 | . . 3 ⊢ (𝑔:𝐵⟶𝐴 ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
| 4 | elmap.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 5 | elmap.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 6 | 4, 5 | elmap 6745 | . . 3 ⊢ (𝑔 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝑔:𝐵⟶𝐴) |
| 7 | elin 3347 | . . . 4 ⊢ (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵})) | |
| 8 | velpw 3613 | . . . . 5 ⊢ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑔 ⊆ (𝐵 × 𝐴)) | |
| 9 | vex 2766 | . . . . . 6 ⊢ 𝑔 ∈ V | |
| 10 | fneq1 5347 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐵 ↔ 𝑔 Fn 𝐵)) | |
| 11 | 9, 10 | elab 2908 | . . . . 5 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵} ↔ 𝑔 Fn 𝐵) |
| 12 | 8, 11 | anbi12i 460 | . . . 4 ⊢ ((𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
| 13 | 7, 12 | bitri 184 | . . 3 ⊢ (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
| 14 | 3, 6, 13 | 3bitr4i 212 | . 2 ⊢ (𝑔 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵})) |
| 15 | 14 | eqriv 2193 | 1 ⊢ (𝐴 ↑𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 𝒫 cpw 3606 × cxp 4662 Fn wfn 5254 ⟶wf 5255 (class class class)co 5925 ↑𝑚 cmap 6716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-map 6718 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |