ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submnd0 Unicode version

Theorem submnd0 12853
Description: The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
submnd0.b  |-  B  =  ( Base `  G
)
submnd0.z  |-  .0.  =  ( 0g `  G )
submnd0.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
submnd0  |-  ( ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S ) )  ->  .0.  =  ( 0g `  H ) )

Proof of Theorem submnd0
StepHypRef Expression
1 simpll 527 . 2  |-  ( ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S ) )  ->  G  e.  Mnd )
2 simprr 531 . 2  |-  ( ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S ) )  ->  .0.  e.  S )
3 simprl 529 . 2  |-  ( ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S ) )  ->  S  C_  B
)
4 submnd0.h . . 3  |-  H  =  ( Gs  S )
5 submnd0.b . . 3  |-  B  =  ( Base `  G
)
6 submnd0.z . . 3  |-  .0.  =  ( 0g `  G )
74, 5, 6ress0g 12852 . 2  |-  ( ( G  e.  Mnd  /\  .0.  e.  S  /\  S  C_  B )  ->  .0.  =  ( 0g `  H ) )
81, 2, 3, 7syl3anc 1238 1  |-  ( ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S ) )  ->  .0.  =  ( 0g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    C_ wss 3131   ` cfv 5218  (class class class)co 5878   Basecbs 12465   ↾s cress 12466   0gc0g 12711   Mndcmnd 12825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-pre-ltirr 7926  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-inn 8923  df-2 8981  df-ndx 12468  df-slot 12469  df-base 12471  df-sets 12472  df-iress 12473  df-plusg 12552  df-0g 12713  df-mgm 12782  df-sgrp 12815  df-mnd 12826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator