| Step | Hyp | Ref
 | Expression | 
| 1 |   | mndinvmod.m | 
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| 2 |   | simpl 109 | 
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → 𝑤 ∈ 𝐵) | 
| 3 |   | mndinvmod.b | 
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) | 
| 4 |   | mndinvmod.p | 
. . . . . . . . 9
⊢  + =
(+g‘𝐺) | 
| 5 |   | mndinvmod.0 | 
. . . . . . . . 9
⊢  0 =
(0g‘𝐺) | 
| 6 | 3, 4, 5 | mndrid 13077 | 
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑤 ∈ 𝐵) → (𝑤 + 0 ) = 𝑤) | 
| 7 | 1, 2, 6 | syl2an 289 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑤 + 0 ) = 𝑤) | 
| 8 | 7 | eqcomd 2202 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑤 = (𝑤 + 0 )) | 
| 9 | 8 | adantr 276 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → 𝑤 = (𝑤 + 0 )) | 
| 10 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ ( 0 = (𝐴 + 𝑣) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣))) | 
| 11 | 10 | eqcoms 2199 | 
. . . . . . . 8
⊢ ((𝐴 + 𝑣) = 0 → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣))) | 
| 12 | 11 | adantl 277 | 
. . . . . . 7
⊢ (((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣))) | 
| 13 | 12 | adantl 277 | 
. . . . . 6
⊢ ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣))) | 
| 14 | 13 | adantl 277 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣))) | 
| 15 | 1 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝐺 ∈ Mnd) | 
| 16 | 2 | adantl 277 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑤 ∈ 𝐵) | 
| 17 |   | mndinvmod.a | 
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| 18 | 17 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝐴 ∈ 𝐵) | 
| 19 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝐵) | 
| 20 | 19 | adantl 277 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑣 ∈ 𝐵) | 
| 21 | 3, 4 | mndass 13065 | 
. . . . . . . . 9
⊢ ((𝐺 ∈ Mnd ∧ (𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((𝑤 + 𝐴) + 𝑣) = (𝑤 + (𝐴 + 𝑣))) | 
| 22 | 21 | eqcomd 2202 | 
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ (𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣)) | 
| 23 | 15, 16, 18, 20, 22 | syl13anc 1251 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣)) | 
| 24 | 23 | adantr 276 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣)) | 
| 25 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ ((𝑤 + 𝐴) = 0 → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣)) | 
| 26 | 25 | adantr 276 | 
. . . . . . . 8
⊢ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣)) | 
| 27 | 26 | adantr 276 | 
. . . . . . 7
⊢ ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣)) | 
| 28 | 27 | adantl 277 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣)) | 
| 29 | 3, 4, 5 | mndlid 13076 | 
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑣 ∈ 𝐵) → ( 0 + 𝑣) = 𝑣) | 
| 30 | 1, 19, 29 | syl2an 289 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ( 0 + 𝑣) = 𝑣) | 
| 31 | 30 | adantr 276 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → ( 0 + 𝑣) = 𝑣) | 
| 32 | 24, 28, 31 | 3eqtrd 2233 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + (𝐴 + 𝑣)) = 𝑣) | 
| 33 | 9, 14, 32 | 3eqtrd 2233 | 
. . . 4
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → 𝑤 = 𝑣) | 
| 34 | 33 | ex 115 | 
. . 3
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣)) | 
| 35 | 34 | ralrimivva 2579 | 
. 2
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣)) | 
| 36 |   | oveq1 5929 | 
. . . . 5
⊢ (𝑤 = 𝑣 → (𝑤 + 𝐴) = (𝑣 + 𝐴)) | 
| 37 | 36 | eqeq1d 2205 | 
. . . 4
⊢ (𝑤 = 𝑣 → ((𝑤 + 𝐴) = 0 ↔ (𝑣 + 𝐴) = 0 )) | 
| 38 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑤 = 𝑣 → (𝐴 + 𝑤) = (𝐴 + 𝑣)) | 
| 39 | 38 | eqeq1d 2205 | 
. . . 4
⊢ (𝑤 = 𝑣 → ((𝐴 + 𝑤) = 0 ↔ (𝐴 + 𝑣) = 0 )) | 
| 40 | 37, 39 | anbi12d 473 | 
. . 3
⊢ (𝑤 = 𝑣 → (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ↔ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) | 
| 41 | 40 | rmo4 2957 | 
. 2
⊢
(∃*𝑤 ∈
𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ↔ ∀𝑤 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣)) | 
| 42 | 35, 41 | sylibr 134 | 
1
⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) |