ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndinvmod GIF version

Theorem mndinvmod 13444
Description: Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
mndinvmod.b 𝐵 = (Base‘𝐺)
mndinvmod.0 0 = (0g𝐺)
mndinvmod.p + = (+g𝐺)
mndinvmod.m (𝜑𝐺 ∈ Mnd)
mndinvmod.a (𝜑𝐴𝐵)
Assertion
Ref Expression
mndinvmod (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤, 0   𝑤, +   𝜑,𝑤
Allowed substitution hint:   𝐺(𝑤)

Proof of Theorem mndinvmod
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 mndinvmod.m . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
2 simpl 109 . . . . . . . 8 ((𝑤𝐵𝑣𝐵) → 𝑤𝐵)
3 mndinvmod.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
4 mndinvmod.p . . . . . . . . 9 + = (+g𝐺)
5 mndinvmod.0 . . . . . . . . 9 0 = (0g𝐺)
63, 4, 5mndrid 13435 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑤𝐵) → (𝑤 + 0 ) = 𝑤)
71, 2, 6syl2an 289 . . . . . . 7 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → (𝑤 + 0 ) = 𝑤)
87eqcomd 2215 . . . . . 6 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝑤 = (𝑤 + 0 ))
98adantr 276 . . . . 5 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → 𝑤 = (𝑤 + 0 ))
10 oveq2 5982 . . . . . . . . 9 ( 0 = (𝐴 + 𝑣) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
1110eqcoms 2212 . . . . . . . 8 ((𝐴 + 𝑣) = 0 → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
1211adantl 277 . . . . . . 7 (((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
1312adantl 277 . . . . . 6 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
1413adantl 277 . . . . 5 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
151adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝐺 ∈ Mnd)
162adantl 277 . . . . . . . 8 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝑤𝐵)
17 mndinvmod.a . . . . . . . . 9 (𝜑𝐴𝐵)
1817adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝐴𝐵)
19 simpr 110 . . . . . . . . 9 ((𝑤𝐵𝑣𝐵) → 𝑣𝐵)
2019adantl 277 . . . . . . . 8 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝑣𝐵)
213, 4mndass 13423 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑤𝐵𝐴𝐵𝑣𝐵)) → ((𝑤 + 𝐴) + 𝑣) = (𝑤 + (𝐴 + 𝑣)))
2221eqcomd 2215 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑤𝐵𝐴𝐵𝑣𝐵)) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣))
2315, 16, 18, 20, 22syl13anc 1254 . . . . . . 7 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣))
2423adantr 276 . . . . . 6 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣))
25 oveq1 5981 . . . . . . . . 9 ((𝑤 + 𝐴) = 0 → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣))
2625adantr 276 . . . . . . . 8 (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣))
2726adantr 276 . . . . . . 7 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣))
2827adantl 277 . . . . . 6 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣))
293, 4, 5mndlid 13434 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑣𝐵) → ( 0 + 𝑣) = 𝑣)
301, 19, 29syl2an 289 . . . . . . 7 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → ( 0 + 𝑣) = 𝑣)
3130adantr 276 . . . . . 6 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → ( 0 + 𝑣) = 𝑣)
3224, 28, 313eqtrd 2246 . . . . 5 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + (𝐴 + 𝑣)) = 𝑣)
339, 14, 323eqtrd 2246 . . . 4 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → 𝑤 = 𝑣)
3433ex 115 . . 3 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣))
3534ralrimivva 2592 . 2 (𝜑 → ∀𝑤𝐵𝑣𝐵 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣))
36 oveq1 5981 . . . . 5 (𝑤 = 𝑣 → (𝑤 + 𝐴) = (𝑣 + 𝐴))
3736eqeq1d 2218 . . . 4 (𝑤 = 𝑣 → ((𝑤 + 𝐴) = 0 ↔ (𝑣 + 𝐴) = 0 ))
38 oveq2 5982 . . . . 5 (𝑤 = 𝑣 → (𝐴 + 𝑤) = (𝐴 + 𝑣))
3938eqeq1d 2218 . . . 4 (𝑤 = 𝑣 → ((𝐴 + 𝑤) = 0 ↔ (𝐴 + 𝑣) = 0 ))
4037, 39anbi12d 473 . . 3 (𝑤 = 𝑣 → (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ↔ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )))
4140rmo4 2976 . 2 (∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ↔ ∀𝑤𝐵𝑣𝐵 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣))
4235, 41sylibr 134 1 (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  wral 2488  ∃*wrmo 2491  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  0gc0g 13255  Mndcmnd 13415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-fv 5302  df-riota 5927  df-ov 5977  df-inn 9079  df-2 9137  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416
This theorem is referenced by:  rinvmod  13812
  Copyright terms: Public domain W3C validator