ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndinvmod GIF version

Theorem mndinvmod 13086
Description: Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
mndinvmod.b 𝐵 = (Base‘𝐺)
mndinvmod.0 0 = (0g𝐺)
mndinvmod.p + = (+g𝐺)
mndinvmod.m (𝜑𝐺 ∈ Mnd)
mndinvmod.a (𝜑𝐴𝐵)
Assertion
Ref Expression
mndinvmod (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤, 0   𝑤, +   𝜑,𝑤
Allowed substitution hint:   𝐺(𝑤)

Proof of Theorem mndinvmod
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 mndinvmod.m . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
2 simpl 109 . . . . . . . 8 ((𝑤𝐵𝑣𝐵) → 𝑤𝐵)
3 mndinvmod.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
4 mndinvmod.p . . . . . . . . 9 + = (+g𝐺)
5 mndinvmod.0 . . . . . . . . 9 0 = (0g𝐺)
63, 4, 5mndrid 13077 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑤𝐵) → (𝑤 + 0 ) = 𝑤)
71, 2, 6syl2an 289 . . . . . . 7 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → (𝑤 + 0 ) = 𝑤)
87eqcomd 2202 . . . . . 6 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝑤 = (𝑤 + 0 ))
98adantr 276 . . . . 5 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → 𝑤 = (𝑤 + 0 ))
10 oveq2 5930 . . . . . . . . 9 ( 0 = (𝐴 + 𝑣) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
1110eqcoms 2199 . . . . . . . 8 ((𝐴 + 𝑣) = 0 → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
1211adantl 277 . . . . . . 7 (((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
1312adantl 277 . . . . . 6 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
1413adantl 277 . . . . 5 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
151adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝐺 ∈ Mnd)
162adantl 277 . . . . . . . 8 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝑤𝐵)
17 mndinvmod.a . . . . . . . . 9 (𝜑𝐴𝐵)
1817adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝐴𝐵)
19 simpr 110 . . . . . . . . 9 ((𝑤𝐵𝑣𝐵) → 𝑣𝐵)
2019adantl 277 . . . . . . . 8 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝑣𝐵)
213, 4mndass 13065 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑤𝐵𝐴𝐵𝑣𝐵)) → ((𝑤 + 𝐴) + 𝑣) = (𝑤 + (𝐴 + 𝑣)))
2221eqcomd 2202 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑤𝐵𝐴𝐵𝑣𝐵)) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣))
2315, 16, 18, 20, 22syl13anc 1251 . . . . . . 7 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣))
2423adantr 276 . . . . . 6 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣))
25 oveq1 5929 . . . . . . . . 9 ((𝑤 + 𝐴) = 0 → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣))
2625adantr 276 . . . . . . . 8 (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣))
2726adantr 276 . . . . . . 7 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣))
2827adantl 277 . . . . . 6 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣))
293, 4, 5mndlid 13076 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑣𝐵) → ( 0 + 𝑣) = 𝑣)
301, 19, 29syl2an 289 . . . . . . 7 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → ( 0 + 𝑣) = 𝑣)
3130adantr 276 . . . . . 6 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → ( 0 + 𝑣) = 𝑣)
3224, 28, 313eqtrd 2233 . . . . 5 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + (𝐴 + 𝑣)) = 𝑣)
339, 14, 323eqtrd 2233 . . . 4 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → 𝑤 = 𝑣)
3433ex 115 . . 3 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣))
3534ralrimivva 2579 . 2 (𝜑 → ∀𝑤𝐵𝑣𝐵 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣))
36 oveq1 5929 . . . . 5 (𝑤 = 𝑣 → (𝑤 + 𝐴) = (𝑣 + 𝐴))
3736eqeq1d 2205 . . . 4 (𝑤 = 𝑣 → ((𝑤 + 𝐴) = 0 ↔ (𝑣 + 𝐴) = 0 ))
38 oveq2 5930 . . . . 5 (𝑤 = 𝑣 → (𝐴 + 𝑤) = (𝐴 + 𝑣))
3938eqeq1d 2205 . . . 4 (𝑤 = 𝑣 → ((𝐴 + 𝑤) = 0 ↔ (𝐴 + 𝑣) = 0 ))
4037, 39anbi12d 473 . . 3 (𝑤 = 𝑣 → (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ↔ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )))
4140rmo4 2957 . 2 (∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ↔ ∀𝑤𝐵𝑣𝐵 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣))
4235, 41sylibr 134 1 (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  ∃*wrmo 2478  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927  Mndcmnd 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058
This theorem is referenced by:  rinvmod  13439
  Copyright terms: Public domain W3C validator