ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetf Unicode version

Theorem psmetf 12531
Description: The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmetf  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )

Proof of Theorem psmetf
Dummy variables  a  b  c  w  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 12193 . . . . 5  |- PsMet  =  ( x  e.  _V  |->  { v  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  (
( y v y )  =  0  /\ 
A. z  e.  x  A. w  e.  x  ( y v z )  <_  ( (
w v y ) +e ( w v z ) ) ) } )
21mptrcl 5510 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
3 ispsmet 12529 . . . 4  |-  ( X  e.  _V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. a  e.  X  ( (
a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) ) ) )
42, 3syl 14 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( D  e.  (PsMet `  X )  <->  ( D : ( X  X.  X ) --> RR* 
/\  A. a  e.  X  ( ( a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  ( a D b )  <_  (
( c D a ) +e ( c D b ) ) ) ) ) )
54ibi 175 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( D : ( X  X.  X ) --> RR*  /\  A. a  e.  X  (
( a D a )  =  0  /\ 
A. b  e.  X  A. c  e.  X  ( a D b )  <_  ( (
c D a ) +e ( c D b ) ) ) ) )
65simpld 111 1  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   {crab 2421   _Vcvv 2689   class class class wbr 3936    X. cxp 4544   -->wf 5126   ` cfv 5130  (class class class)co 5781    ^m cmap 6549   0cc0 7643   RR*cxr 7822    <_ cle 7824   +ecxad 9586  PsMetcpsmet 12185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-map 6551  df-pnf 7825  df-mnf 7826  df-xr 7827  df-psmet 12193
This theorem is referenced by:  psmetcl  12532  psmetxrge0  12538  psmetres2  12539  distspace  12541
  Copyright terms: Public domain W3C validator