![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptrcl | GIF version |
Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) (Revised by Jim Kingdon, 27-Mar-2023.) |
Ref | Expression |
---|---|
fvmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
mptrcl | ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmptss 5163 | . 2 ⊢ dom 𝐹 ⊆ 𝐴 |
3 | 1 | funmpt2 5294 | . . . 4 ⊢ Fun 𝐹 |
4 | funrel 5272 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ Rel 𝐹 |
6 | relelfvdm 5587 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐼 ∈ (𝐹‘𝑋)) → 𝑋 ∈ dom 𝐹) | |
7 | 5, 6 | mpan 424 | . 2 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ dom 𝐹) |
8 | 2, 7 | sselid 3178 | 1 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ↦ cmpt 4091 dom cdm 4660 Rel wrel 4665 Fun wfun 5249 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fv 5263 |
This theorem is referenced by: divsfval 12914 submrcl 13046 issubg 13246 isnsg 13275 issubrng 13698 issubrg 13720 zrhval 14116 psmetdmdm 14503 psmetf 14504 psmet0 14506 psmettri2 14507 psmetres2 14512 plybss 14912 |
Copyright terms: Public domain | W3C validator |