| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptrcl | GIF version | ||
| Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) (Revised by Jim Kingdon, 27-Mar-2023.) |
| Ref | Expression |
|---|---|
| fvmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| mptrcl | ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmptss 5201 | . 2 ⊢ dom 𝐹 ⊆ 𝐴 |
| 3 | 1 | funmpt2 5333 | . . . 4 ⊢ Fun 𝐹 |
| 4 | funrel 5311 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ Rel 𝐹 |
| 6 | relelfvdm 5635 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐼 ∈ (𝐹‘𝑋)) → 𝑋 ∈ dom 𝐹) | |
| 7 | 5, 6 | mpan 424 | . 2 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ dom 𝐹) |
| 8 | 2, 7 | sselid 3202 | 1 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ↦ cmpt 4124 dom cdm 4696 Rel wrel 4701 Fun wfun 5288 ‘cfv 5294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fv 5302 |
| This theorem is referenced by: bitsval 12420 divsfval 13327 submrcl 13470 issubg 13676 isnsg 13705 issubrng 14128 issubrg 14150 zrhval 14546 psmetdmdm 14963 psmetf 14964 psmet0 14966 psmettri2 14967 psmetres2 14972 plybss 15372 |
| Copyright terms: Public domain | W3C validator |