ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptrcl GIF version

Theorem mptrcl 5641
Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) (Revised by Jim Kingdon, 27-Mar-2023.)
Hypothesis
Ref Expression
fvmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptrcl (𝐼 ∈ (𝐹𝑋) → 𝑋𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑋(𝑥)

Proof of Theorem mptrcl
StepHypRef Expression
1 fvmpt2.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmptss 5163 . 2 dom 𝐹𝐴
31funmpt2 5294 . . . 4 Fun 𝐹
4 funrel 5272 . . . 4 (Fun 𝐹 → Rel 𝐹)
53, 4ax-mp 5 . . 3 Rel 𝐹
6 relelfvdm 5587 . . 3 ((Rel 𝐹𝐼 ∈ (𝐹𝑋)) → 𝑋 ∈ dom 𝐹)
75, 6mpan 424 . 2 (𝐼 ∈ (𝐹𝑋) → 𝑋 ∈ dom 𝐹)
82, 7sselid 3178 1 (𝐼 ∈ (𝐹𝑋) → 𝑋𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  cmpt 4091  dom cdm 4660  Rel wrel 4665  Fun wfun 5249  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fv 5263
This theorem is referenced by:  divsfval  12914  submrcl  13046  issubg  13246  isnsg  13275  issubrng  13698  issubrg  13720  zrhval  14116  psmetdmdm  14503  psmetf  14504  psmet0  14506  psmettri2  14507  psmetres2  14512  plybss  14912
  Copyright terms: Public domain W3C validator