| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptrcl | GIF version | ||
| Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) (Revised by Jim Kingdon, 27-Mar-2023.) |
| Ref | Expression |
|---|---|
| fvmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| mptrcl | ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmptss 5225 | . 2 ⊢ dom 𝐹 ⊆ 𝐴 |
| 3 | 1 | funmpt2 5357 | . . . 4 ⊢ Fun 𝐹 |
| 4 | funrel 5335 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ Rel 𝐹 |
| 6 | relelfvdm 5661 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐼 ∈ (𝐹‘𝑋)) → 𝑋 ∈ dom 𝐹) | |
| 7 | 5, 6 | mpan 424 | . 2 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ dom 𝐹) |
| 8 | 2, 7 | sselid 3222 | 1 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ↦ cmpt 4145 dom cdm 4719 Rel wrel 4724 Fun wfun 5312 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fv 5326 |
| This theorem is referenced by: bitsval 12462 divsfval 13369 submrcl 13512 issubg 13718 isnsg 13747 issubrng 14171 issubrg 14193 zrhval 14589 psmetdmdm 15006 psmetf 15007 psmet0 15009 psmettri2 15010 psmetres2 15015 plybss 15415 wlkmex 16040 wlkreslem 16097 trlsv 16103 |
| Copyright terms: Public domain | W3C validator |