| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptrcl | GIF version | ||
| Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) (Revised by Jim Kingdon, 27-Mar-2023.) |
| Ref | Expression |
|---|---|
| fvmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| mptrcl | ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmptss 5184 | . 2 ⊢ dom 𝐹 ⊆ 𝐴 |
| 3 | 1 | funmpt2 5315 | . . . 4 ⊢ Fun 𝐹 |
| 4 | funrel 5293 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ Rel 𝐹 |
| 6 | relelfvdm 5615 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐼 ∈ (𝐹‘𝑋)) → 𝑋 ∈ dom 𝐹) | |
| 7 | 5, 6 | mpan 424 | . 2 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ dom 𝐹) |
| 8 | 2, 7 | sselid 3192 | 1 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ↦ cmpt 4109 dom cdm 4679 Rel wrel 4684 Fun wfun 5270 ‘cfv 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fv 5284 |
| This theorem is referenced by: bitsval 12298 divsfval 13204 submrcl 13347 issubg 13553 isnsg 13582 issubrng 14005 issubrg 14027 zrhval 14423 psmetdmdm 14840 psmetf 14841 psmet0 14843 psmettri2 14844 psmetres2 14849 plybss 15249 |
| Copyright terms: Public domain | W3C validator |