ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmet0 Unicode version

Theorem psmet0 14495
Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmet0  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X )  ->  ( A D A )  =  0 )

Proof of Theorem psmet0
Dummy variables  a  b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 14039 . . . . . . . . 9  |- PsMet  =  ( d  e.  _V  |->  { e  e.  ( RR*  ^m  ( d  X.  d
) )  |  A. a  e.  d  (
( a e a )  =  0  /\ 
A. b  e.  d 
A. c  e.  d  ( a e b )  <_  ( (
c e a ) +e ( c e b ) ) ) } )
21mptrcl 5640 . . . . . . . 8  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
3 ispsmet 14491 . . . . . . . 8  |-  ( X  e.  _V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. a  e.  X  ( (
a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) ) ) )
42, 3syl 14 . . . . . . 7  |-  ( D  e.  (PsMet `  X
)  ->  ( D  e.  (PsMet `  X )  <->  ( D : ( X  X.  X ) --> RR* 
/\  A. a  e.  X  ( ( a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  ( a D b )  <_  (
( c D a ) +e ( c D b ) ) ) ) ) )
54ibi 176 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  ( D : ( X  X.  X ) --> RR*  /\  A. a  e.  X  (
( a D a )  =  0  /\ 
A. b  e.  X  A. c  e.  X  ( a D b )  <_  ( (
c D a ) +e ( c D b ) ) ) ) )
65simprd 114 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  X  ( (
a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) )
76r19.21bi 2582 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  ->  (
( a D a )  =  0  /\ 
A. b  e.  X  A. c  e.  X  ( a D b )  <_  ( (
c D a ) +e ( c D b ) ) ) )
87simpld 112 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  ->  (
a D a )  =  0 )
98ralrimiva 2567 . 2  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  X  ( a D a )  =  0 )
10 id 19 . . . . 5  |-  ( a  =  A  ->  a  =  A )
1110, 10oveq12d 5936 . . . 4  |-  ( a  =  A  ->  (
a D a )  =  ( A D A ) )
1211eqeq1d 2202 . . 3  |-  ( a  =  A  ->  (
( a D a )  =  0  <->  ( A D A )  =  0 ) )
1312rspcv 2860 . 2  |-  ( A  e.  X  ->  ( A. a  e.  X  ( a D a )  =  0  -> 
( A D A )  =  0 ) )
149, 13mpan9 281 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X )  ->  ( A D A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476   _Vcvv 2760   class class class wbr 4029    X. cxp 4657   -->wf 5250   ` cfv 5254  (class class class)co 5918    ^m cmap 6702   0cc0 7872   RR*cxr 8053    <_ cle 8055   +ecxad 9836  PsMetcpsmet 14031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-psmet 14039
This theorem is referenced by:  psmetsym  14497  psmetge0  14499  psmetres2  14501  distspace  14503  xblcntrps  14581  ssblps  14593
  Copyright terms: Public domain W3C validator