ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmet0 Unicode version

Theorem psmet0 12666
Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmet0  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X )  ->  ( A D A )  =  0 )

Proof of Theorem psmet0
Dummy variables  a  b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 12326 . . . . . . . . 9  |- PsMet  =  ( d  e.  _V  |->  { e  e.  ( RR*  ^m  ( d  X.  d
) )  |  A. a  e.  d  (
( a e a )  =  0  /\ 
A. b  e.  d 
A. c  e.  d  ( a e b )  <_  ( (
c e a ) +e ( c e b ) ) ) } )
21mptrcl 5543 . . . . . . . 8  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
3 ispsmet 12662 . . . . . . . 8  |-  ( X  e.  _V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. a  e.  X  ( (
a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) ) ) )
42, 3syl 14 . . . . . . 7  |-  ( D  e.  (PsMet `  X
)  ->  ( D  e.  (PsMet `  X )  <->  ( D : ( X  X.  X ) --> RR* 
/\  A. a  e.  X  ( ( a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  ( a D b )  <_  (
( c D a ) +e ( c D b ) ) ) ) ) )
54ibi 175 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  ( D : ( X  X.  X ) --> RR*  /\  A. a  e.  X  (
( a D a )  =  0  /\ 
A. b  e.  X  A. c  e.  X  ( a D b )  <_  ( (
c D a ) +e ( c D b ) ) ) ) )
65simprd 113 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  X  ( (
a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) )
76r19.21bi 2542 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  ->  (
( a D a )  =  0  /\ 
A. b  e.  X  A. c  e.  X  ( a D b )  <_  ( (
c D a ) +e ( c D b ) ) ) )
87simpld 111 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  ->  (
a D a )  =  0 )
98ralrimiva 2527 . 2  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  X  ( a D a )  =  0 )
10 id 19 . . . . 5  |-  ( a  =  A  ->  a  =  A )
1110, 10oveq12d 5832 . . . 4  |-  ( a  =  A  ->  (
a D a )  =  ( A D A ) )
1211eqeq1d 2163 . . 3  |-  ( a  =  A  ->  (
( a D a )  =  0  <->  ( A D A )  =  0 ) )
1312rspcv 2809 . 2  |-  ( A  e.  X  ->  ( A. a  e.  X  ( a D a )  =  0  -> 
( A D A )  =  0 ) )
149, 13mpan9 279 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X )  ->  ( A D A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 2125   A.wral 2432   {crab 2436   _Vcvv 2709   class class class wbr 3961    X. cxp 4577   -->wf 5159   ` cfv 5163  (class class class)co 5814    ^m cmap 6582   0cc0 7711   RR*cxr 7890    <_ cle 7892   +ecxad 9655  PsMetcpsmet 12318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-map 6584  df-pnf 7893  df-mnf 7894  df-xr 7895  df-psmet 12326
This theorem is referenced by:  psmetsym  12668  psmetge0  12670  psmetres2  12672  distspace  12674  xblcntrps  12752  ssblps  12764
  Copyright terms: Public domain W3C validator