ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmet0 Unicode version

Theorem psmet0 15001
Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmet0  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X )  ->  ( A D A )  =  0 )

Proof of Theorem psmet0
Dummy variables  a  b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 14507 . . . . . . . . 9  |- PsMet  =  ( d  e.  _V  |->  { e  e.  ( RR*  ^m  ( d  X.  d
) )  |  A. a  e.  d  (
( a e a )  =  0  /\ 
A. b  e.  d 
A. c  e.  d  ( a e b )  <_  ( (
c e a ) +e ( c e b ) ) ) } )
21mptrcl 5717 . . . . . . . 8  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
3 ispsmet 14997 . . . . . . . 8  |-  ( X  e.  _V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. a  e.  X  ( (
a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) ) ) )
42, 3syl 14 . . . . . . 7  |-  ( D  e.  (PsMet `  X
)  ->  ( D  e.  (PsMet `  X )  <->  ( D : ( X  X.  X ) --> RR* 
/\  A. a  e.  X  ( ( a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  ( a D b )  <_  (
( c D a ) +e ( c D b ) ) ) ) ) )
54ibi 176 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  ( D : ( X  X.  X ) --> RR*  /\  A. a  e.  X  (
( a D a )  =  0  /\ 
A. b  e.  X  A. c  e.  X  ( a D b )  <_  ( (
c D a ) +e ( c D b ) ) ) ) )
65simprd 114 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  X  ( (
a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) )
76r19.21bi 2618 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  ->  (
( a D a )  =  0  /\ 
A. b  e.  X  A. c  e.  X  ( a D b )  <_  ( (
c D a ) +e ( c D b ) ) ) )
87simpld 112 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  ->  (
a D a )  =  0 )
98ralrimiva 2603 . 2  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  X  ( a D a )  =  0 )
10 id 19 . . . . 5  |-  ( a  =  A  ->  a  =  A )
1110, 10oveq12d 6019 . . . 4  |-  ( a  =  A  ->  (
a D a )  =  ( A D A ) )
1211eqeq1d 2238 . . 3  |-  ( a  =  A  ->  (
( a D a )  =  0  <->  ( A D A )  =  0 ) )
1312rspcv 2903 . 2  |-  ( A  e.  X  ->  ( A. a  e.  X  ( a D a )  =  0  -> 
( A D A )  =  0 ) )
149, 13mpan9 281 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X )  ->  ( A D A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799   class class class wbr 4083    X. cxp 4717   -->wf 5314   ` cfv 5318  (class class class)co 6001    ^m cmap 6795   0cc0 7999   RR*cxr 8180    <_ cle 8182   +ecxad 9966  PsMetcpsmet 14499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-map 6797  df-pnf 8183  df-mnf 8184  df-xr 8185  df-psmet 14507
This theorem is referenced by:  psmetsym  15003  psmetge0  15005  psmetres2  15007  distspace  15009  xblcntrps  15087  ssblps  15099
  Copyright terms: Public domain W3C validator