Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid2 | Unicode version |
Description: Identity law for multiplication. Note: see mulid1 7896 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mulid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7846 | . . 3 | |
2 | mulcom 7882 | . . 3 | |
3 | 1, 2 | mpan 421 | . 2 |
4 | mulid1 7896 | . 2 | |
5 | 3, 4 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 (class class class)co 5842 cc 7751 c1 7754 cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-mulcom 7854 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: mulid2i 7902 mulid2d 7917 muladd11 8031 1p1times 8032 mulm1 8298 div1 8599 recdivap 8614 divdivap2 8620 conjmulap 8625 expp1 10462 recan 11051 arisum 11439 geo2sum 11455 prodrbdclem 11512 prodmodclem2a 11517 demoivreALT 11714 gcdadd 11918 gcdid 11919 |
Copyright terms: Public domain | W3C validator |