Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid2 | Unicode version |
Description: Identity law for multiplication. Note: see mulid1 7917 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mulid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7867 | . . 3 | |
2 | mulcom 7903 | . . 3 | |
3 | 1, 2 | mpan 422 | . 2 |
4 | mulid1 7917 | . 2 | |
5 | 3, 4 | eqtrd 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 c1 7775 cmul 7779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-mulcom 7875 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: mulid2i 7923 mulid2d 7938 muladd11 8052 1p1times 8053 mulm1 8319 div1 8620 recdivap 8635 divdivap2 8641 conjmulap 8646 expp1 10483 recan 11073 arisum 11461 geo2sum 11477 prodrbdclem 11534 prodmodclem2a 11539 demoivreALT 11736 gcdadd 11940 gcdid 11941 |
Copyright terms: Public domain | W3C validator |