Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid2 | Unicode version |
Description: Identity law for multiplication. Note: see mulid1 7929 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mulid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7879 | . . 3 | |
2 | mulcom 7915 | . . 3 | |
3 | 1, 2 | mpan 424 | . 2 |
4 | mulid1 7929 | . 2 | |
5 | 3, 4 | eqtrd 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 (class class class)co 5865 cc 7784 c1 7787 cmul 7791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-resscn 7878 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-mulcl 7884 ax-mulcom 7887 ax-mulass 7889 ax-distr 7890 ax-1rid 7893 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: mulid2i 7935 mulid2d 7950 muladd11 8064 1p1times 8065 mulm1 8331 div1 8632 recdivap 8647 divdivap2 8653 conjmulap 8658 expp1 10495 recan 11084 arisum 11472 geo2sum 11488 prodrbdclem 11545 prodmodclem2a 11550 demoivreALT 11747 gcdadd 11951 gcdid 11952 |
Copyright terms: Public domain | W3C validator |