Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid2 | GIF version |
Description: Identity law for multiplication. Note: see mulid1 7854 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mulid2 | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7804 | . . 3 ⊢ 1 ∈ ℂ | |
2 | mulcom 7840 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
3 | 1, 2 | mpan 421 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
4 | mulid1 7854 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
5 | 3, 4 | eqtrd 2187 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1332 ∈ wcel 2125 (class class class)co 5814 ℂcc 7709 1c1 7712 · cmul 7716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-resscn 7803 ax-1cn 7804 ax-icn 7806 ax-addcl 7807 ax-mulcl 7809 ax-mulcom 7812 ax-mulass 7814 ax-distr 7815 ax-1rid 7818 ax-cnre 7822 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-iota 5128 df-fv 5171 df-ov 5817 |
This theorem is referenced by: mulid2i 7860 mulid2d 7875 muladd11 7987 1p1times 7988 mulm1 8254 div1 8555 recdivap 8570 divdivap2 8576 conjmulap 8581 expp1 10404 recan 10986 arisum 11372 geo2sum 11388 prodrbdclem 11445 prodmodclem2a 11450 demoivreALT 11647 gcdadd 11841 gcdid 11842 |
Copyright terms: Public domain | W3C validator |