Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid1 | Unicode version |
Description: is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mulid1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 7895 | . 2 | |
2 | recn 7886 | . . . . . 6 | |
3 | ax-icn 7848 | . . . . . . 7 | |
4 | recn 7886 | . . . . . . 7 | |
5 | mulcl 7880 | . . . . . . 7 | |
6 | 3, 4, 5 | sylancr 411 | . . . . . 6 |
7 | ax-1cn 7846 | . . . . . . 7 | |
8 | adddir 7890 | . . . . . . 7 | |
9 | 7, 8 | mp3an3 1316 | . . . . . 6 |
10 | 2, 6, 9 | syl2an 287 | . . . . 5 |
11 | ax-1rid 7860 | . . . . . 6 | |
12 | mulass 7884 | . . . . . . . . 9 | |
13 | 3, 7, 12 | mp3an13 1318 | . . . . . . . 8 |
14 | 4, 13 | syl 14 | . . . . . . 7 |
15 | ax-1rid 7860 | . . . . . . . 8 | |
16 | 15 | oveq2d 5858 | . . . . . . 7 |
17 | 14, 16 | eqtrd 2198 | . . . . . 6 |
18 | 11, 17 | oveqan12d 5861 | . . . . 5 |
19 | 10, 18 | eqtrd 2198 | . . . 4 |
20 | oveq1 5849 | . . . . 5 | |
21 | id 19 | . . . . 5 | |
22 | 20, 21 | eqeq12d 2180 | . . . 4 |
23 | 19, 22 | syl5ibrcom 156 | . . 3 |
24 | 23 | rexlimivv 2589 | . 2 |
25 | 1, 24 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wrex 2445 (class class class)co 5842 cc 7751 cr 7752 c1 7754 ci 7755 caddc 7756 cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-mulcom 7854 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: mulid2 7897 mulid1i 7901 mulid1d 7916 muleqadd 8565 divdivap1 8619 conjmulap 8625 nnmulcl 8878 expmul 10500 binom21 10567 binom2sub1 10569 bernneq 10575 hashiun 11419 fproddccvg 11513 prodmodclem2a 11517 efexp 11623 ecxp 13462 lgsdilem2 13577 |
Copyright terms: Public domain | W3C validator |