ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulid1 Unicode version

Theorem mulid1 7917
Description:  1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mulid1  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )

Proof of Theorem mulid1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7916 . 2  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
2 recn 7907 . . . . . 6  |-  ( x  e.  RR  ->  x  e.  CC )
3 ax-icn 7869 . . . . . . 7  |-  _i  e.  CC
4 recn 7907 . . . . . . 7  |-  ( y  e.  RR  ->  y  e.  CC )
5 mulcl 7901 . . . . . . 7  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
63, 4, 5sylancr 412 . . . . . 6  |-  ( y  e.  RR  ->  (
_i  x.  y )  e.  CC )
7 ax-1cn 7867 . . . . . . 7  |-  1  e.  CC
8 adddir 7911 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  1  e.  CC )  ->  ( ( x  +  ( _i  x.  y
) )  x.  1 )  =  ( ( x  x.  1 )  +  ( ( _i  x.  y )  x.  1 ) ) )
97, 8mp3an3 1321 . . . . . 6  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC )  ->  ( ( x  +  ( _i  x.  y ) )  x.  1 )  =  ( ( x  x.  1 )  +  ( ( _i  x.  y )  x.  1 ) ) )
102, 6, 9syl2an 287 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  +  ( _i  x.  y
) )  x.  1 )  =  ( ( x  x.  1 )  +  ( ( _i  x.  y )  x.  1 ) ) )
11 ax-1rid 7881 . . . . . 6  |-  ( x  e.  RR  ->  (
x  x.  1 )  =  x )
12 mulass 7905 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  y  e.  CC  /\  1  e.  CC )  ->  (
( _i  x.  y
)  x.  1 )  =  ( _i  x.  ( y  x.  1 ) ) )
133, 7, 12mp3an13 1323 . . . . . . . 8  |-  ( y  e.  CC  ->  (
( _i  x.  y
)  x.  1 )  =  ( _i  x.  ( y  x.  1 ) ) )
144, 13syl 14 . . . . . . 7  |-  ( y  e.  RR  ->  (
( _i  x.  y
)  x.  1 )  =  ( _i  x.  ( y  x.  1 ) ) )
15 ax-1rid 7881 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  x.  1 )  =  y )
1615oveq2d 5869 . . . . . . 7  |-  ( y  e.  RR  ->  (
_i  x.  ( y  x.  1 ) )  =  ( _i  x.  y
) )
1714, 16eqtrd 2203 . . . . . 6  |-  ( y  e.  RR  ->  (
( _i  x.  y
)  x.  1 )  =  ( _i  x.  y ) )
1811, 17oveqan12d 5872 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  x.  1 )  +  ( ( _i  x.  y
)  x.  1 ) )  =  ( x  +  ( _i  x.  y ) ) )
1910, 18eqtrd 2203 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  +  ( _i  x.  y
) )  x.  1 )  =  ( x  +  ( _i  x.  y ) ) )
20 oveq1 5860 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A  x.  1 )  =  ( ( x  +  ( _i  x.  y ) )  x.  1 ) )
21 id 19 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
2220, 21eqeq12d 2185 . . . 4  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
( A  x.  1 )  =  A  <->  ( (
x  +  ( _i  x.  y ) )  x.  1 )  =  ( x  +  ( _i  x.  y ) ) ) )
2319, 22syl5ibrcom 156 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  ->  ( A  x.  1 )  =  A ) )
2423rexlimivv 2593 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  ( A  x.  1 )  =  A )
251, 24syl 14 1  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   E.wrex 2449  (class class class)co 5853   CCcc 7772   RRcr 7773   1c1 7775   _ici 7776    + caddc 7777    x. cmul 7779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-resscn 7866  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-mulcl 7872  ax-mulcom 7875  ax-mulass 7877  ax-distr 7878  ax-1rid 7881  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  mulid2  7918  mulid1i  7922  mulid1d  7937  muleqadd  8586  divdivap1  8640  conjmulap  8646  nnmulcl  8899  expmul  10521  binom21  10588  binom2sub1  10590  bernneq  10596  hashiun  11441  fproddccvg  11535  prodmodclem2a  11539  efexp  11645  ecxp  13616  lgsdilem2  13731
  Copyright terms: Public domain W3C validator