Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid2i | Unicode version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 |
Ref | Expression |
---|---|
mulid2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 | |
2 | mulid2 7897 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 (class class class)co 5842 cc 7751 c1 7754 cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-mulcom 7854 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: halfpm6th 9077 div4p1lem1div2 9110 3halfnz 9288 sq10 10625 fac2 10644 efival 11673 ef01bndlem 11697 3dvdsdec 11802 3dvds2dec 11803 odd2np1lem 11809 m1expo 11837 m1exp1 11838 nno 11843 sin2pim 13374 cos2pim 13375 sincosq3sgn 13389 sincosq4sgn 13390 cosq23lt0 13394 tangtx 13399 sincosq1eq 13400 sincos4thpi 13401 sincos6thpi 13403 abssinper 13407 cosq34lt1 13411 lgsdir2lem1 13569 lgsdir2lem4 13572 lgsdir2lem5 13573 ex-fl 13606 |
Copyright terms: Public domain | W3C validator |