ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expp1 Unicode version

Theorem expp1 10331
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
expp1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )

Proof of Theorem expp1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9003 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 simpr 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  NN )
3 elnnuz 9386 . . . . . . 7  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
42, 3sylib 121 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  ( ZZ>= ` 
1 ) )
5 simpll 519 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN )  /\  x  e.  (
ZZ>= `  1 ) )  ->  A  e.  CC )
6 elnnuz 9386 . . . . . . . . 9  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
7 fvconst2g 5642 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  =  A )
87eleq1d 2209 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( ( NN 
X.  { A }
) `  x )  e.  CC  <->  A  e.  CC ) )
96, 8sylan2br 286 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( ( NN 
X.  { A }
) `  x )  e.  CC  <->  A  e.  CC ) )
109adantlr 469 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN )  /\  x  e.  (
ZZ>= `  1 ) )  ->  ( ( ( NN  X.  { A } ) `  x
)  e.  CC  <->  A  e.  CC ) )
115, 10mpbird 166 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN )  /\  x  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { A }
) `  x )  e.  CC )
12 mulcl 7771 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
1312adantl 275 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
144, 11, 13seq3p1 10266 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  ( N  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  ( ( NN  X.  { A } ) `  ( N  +  1
) ) ) )
15 peano2nn 8756 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
16 fvconst2g 5642 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( ( NN 
X.  { A }
) `  ( N  +  1 ) )  =  A )
1715, 16sylan2 284 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( NN  X.  { A } ) `  ( N  +  1
) )  =  A )
1817oveq2d 5798 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N )  x.  (
( NN  X.  { A } ) `  ( N  +  1 ) ) )  =  ( (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
)  x.  A ) )
1914, 18eqtrd 2173 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  ( N  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  A ) )
20 expnnval 10327 . . . . 5  |-  ( ( A  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( A ^
( N  +  1 ) )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( N  + 
1 ) ) )
2115, 20sylan2 284 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ ( N  +  1 ) )  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( N  +  1
) ) )
22 expnnval 10327 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
2322oveq1d 5797 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( A ^ N )  x.  A
)  =  ( (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  A ) )
2419, 21, 233eqtr4d 2183 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
25 exp1 10330 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
26 mulid2 7788 . . . . . 6  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
2725, 26eqtr4d 2176 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  ( 1  x.  A
) )
2827adantr 274 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
1 )  =  ( 1  x.  A ) )
29 simpr 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  N  =  0 )
3029oveq1d 5797 . . . . . 6  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( N  + 
1 )  =  ( 0  +  1 ) )
31 0p1e1 8858 . . . . . 6  |-  ( 0  +  1 )  =  1
3230, 31eqtrdi 2189 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( N  + 
1 )  =  1 )
3332oveq2d 5798 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
( N  +  1 ) )  =  ( A ^ 1 ) )
34 oveq2 5790 . . . . . 6  |-  ( N  =  0  ->  ( A ^ N )  =  ( A ^ 0 ) )
35 exp0 10328 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3634, 35sylan9eqr 2195 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ N )  =  1 )
3736oveq1d 5797 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( ( A ^ N )  x.  A )  =  ( 1  x.  A ) )
3828, 33, 373eqtr4d 2183 . . 3  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
( N  +  1 ) )  =  ( ( A ^ N
)  x.  A ) )
3924, 38jaodan 787 . 2  |-  ( ( A  e.  CC  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( A ^ ( N  + 
1 ) )  =  ( ( A ^ N )  x.  A
) )
401, 39sylan2b 285 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332    e. wcel 1481   {csn 3532    X. cxp 4545   ` cfv 5131  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649   NNcn 8744   NN0cn0 9001   ZZ>=cuz 9350    seqcseq 10249   ^cexp 10323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-seqfrec 10250  df-exp 10324
This theorem is referenced by:  expcllem  10335  expm1t  10352  expap0  10354  mulexp  10363  expadd  10366  expmul  10369  leexp2r  10378  leexp1a  10379  sqval  10382  cu2  10422  i3  10425  binom3  10440  bernneq  10443  expp1d  10456  faclbnd  10519  faclbnd2  10520  faclbnd6  10522  cjexp  10697  absexp  10883  binomlem  11284  geolim  11312  geo2sum  11315  efexp  11425  demoivreALT  11516  prmdvdsexp  11862  oddpwdclemodd  11886  expcncf  12800  dvexp  12883  tangtx  12967
  Copyright terms: Public domain W3C validator