Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expp1 | Unicode version |
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.) |
Ref | Expression |
---|---|
expp1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9071 | . 2 | |
2 | simpr 109 | . . . . . . 7 | |
3 | elnnuz 9454 | . . . . . . 7 | |
4 | 2, 3 | sylib 121 | . . . . . 6 |
5 | simpll 519 | . . . . . . 7 | |
6 | elnnuz 9454 | . . . . . . . . 9 | |
7 | fvconst2g 5674 | . . . . . . . . . 10 | |
8 | 7 | eleq1d 2223 | . . . . . . . . 9 |
9 | 6, 8 | sylan2br 286 | . . . . . . . 8 |
10 | 9 | adantlr 469 | . . . . . . 7 |
11 | 5, 10 | mpbird 166 | . . . . . 6 |
12 | mulcl 7838 | . . . . . . 7 | |
13 | 12 | adantl 275 | . . . . . 6 |
14 | 4, 11, 13 | seq3p1 10339 | . . . . 5 |
15 | peano2nn 8824 | . . . . . . 7 | |
16 | fvconst2g 5674 | . . . . . . 7 | |
17 | 15, 16 | sylan2 284 | . . . . . 6 |
18 | 17 | oveq2d 5830 | . . . . 5 |
19 | 14, 18 | eqtrd 2187 | . . . 4 |
20 | expnnval 10400 | . . . . 5 | |
21 | 15, 20 | sylan2 284 | . . . 4 |
22 | expnnval 10400 | . . . . 5 | |
23 | 22 | oveq1d 5829 | . . . 4 |
24 | 19, 21, 23 | 3eqtr4d 2197 | . . 3 |
25 | exp1 10403 | . . . . . 6 | |
26 | mulid2 7855 | . . . . . 6 | |
27 | 25, 26 | eqtr4d 2190 | . . . . 5 |
28 | 27 | adantr 274 | . . . 4 |
29 | simpr 109 | . . . . . . 7 | |
30 | 29 | oveq1d 5829 | . . . . . 6 |
31 | 0p1e1 8926 | . . . . . 6 | |
32 | 30, 31 | eqtrdi 2203 | . . . . 5 |
33 | 32 | oveq2d 5830 | . . . 4 |
34 | oveq2 5822 | . . . . . 6 | |
35 | exp0 10401 | . . . . . 6 | |
36 | 34, 35 | sylan9eqr 2209 | . . . . 5 |
37 | 36 | oveq1d 5829 | . . . 4 |
38 | 28, 33, 37 | 3eqtr4d 2197 | . . 3 |
39 | 24, 38 | jaodan 787 | . 2 |
40 | 1, 39 | sylan2b 285 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1332 wcel 2125 csn 3556 cxp 4577 cfv 5163 (class class class)co 5814 cc 7709 cc0 7711 c1 7712 caddc 7714 cmul 7716 cn 8812 cn0 9069 cuz 9418 cseq 10322 cexp 10396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-n0 9070 df-z 9147 df-uz 9419 df-seqfrec 10323 df-exp 10397 |
This theorem is referenced by: expcllem 10408 expm1t 10425 expap0 10427 mulexp 10436 expadd 10439 expmul 10442 leexp2r 10451 leexp1a 10452 sqval 10455 cu2 10495 i3 10498 binom3 10513 bernneq 10516 expp1d 10529 faclbnd 10592 faclbnd2 10593 faclbnd6 10595 cjexp 10770 absexp 10956 binomlem 11357 geolim 11385 geo2sum 11388 efexp 11556 demoivreALT 11647 prmdvdsexp 11993 oddpwdclemodd 12017 expcncf 12931 dvexp 13014 tangtx 13098 |
Copyright terms: Public domain | W3C validator |