ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expp1 Unicode version

Theorem expp1 10691
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
expp1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )

Proof of Theorem expp1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9297 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 simpr 110 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  NN )
3 elnnuz 9685 . . . . . . 7  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
42, 3sylib 122 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  ( ZZ>= ` 
1 ) )
5 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN )  /\  x  e.  (
ZZ>= `  1 ) )  ->  A  e.  CC )
6 elnnuz 9685 . . . . . . . . 9  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
7 fvconst2g 5798 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  =  A )
87eleq1d 2274 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( ( NN 
X.  { A }
) `  x )  e.  CC  <->  A  e.  CC ) )
96, 8sylan2br 288 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( ( NN 
X.  { A }
) `  x )  e.  CC  <->  A  e.  CC ) )
109adantlr 477 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN )  /\  x  e.  (
ZZ>= `  1 ) )  ->  ( ( ( NN  X.  { A } ) `  x
)  e.  CC  <->  A  e.  CC ) )
115, 10mpbird 167 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN )  /\  x  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { A }
) `  x )  e.  CC )
12 mulcl 8052 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
1312adantl 277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
144, 11, 13seq3p1 10610 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  ( N  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  ( ( NN  X.  { A } ) `  ( N  +  1
) ) ) )
15 peano2nn 9048 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
16 fvconst2g 5798 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( ( NN 
X.  { A }
) `  ( N  +  1 ) )  =  A )
1715, 16sylan2 286 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( NN  X.  { A } ) `  ( N  +  1
) )  =  A )
1817oveq2d 5960 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N )  x.  (
( NN  X.  { A } ) `  ( N  +  1 ) ) )  =  ( (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
)  x.  A ) )
1914, 18eqtrd 2238 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  ( N  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  A ) )
20 expnnval 10687 . . . . 5  |-  ( ( A  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( A ^
( N  +  1 ) )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( N  + 
1 ) ) )
2115, 20sylan2 286 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ ( N  +  1 ) )  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( N  +  1
) ) )
22 expnnval 10687 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
2322oveq1d 5959 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( A ^ N )  x.  A
)  =  ( (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  A ) )
2419, 21, 233eqtr4d 2248 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
25 exp1 10690 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
26 mullid 8070 . . . . . 6  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
2725, 26eqtr4d 2241 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  ( 1  x.  A
) )
2827adantr 276 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
1 )  =  ( 1  x.  A ) )
29 simpr 110 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  N  =  0 )
3029oveq1d 5959 . . . . . 6  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( N  + 
1 )  =  ( 0  +  1 ) )
31 0p1e1 9150 . . . . . 6  |-  ( 0  +  1 )  =  1
3230, 31eqtrdi 2254 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( N  + 
1 )  =  1 )
3332oveq2d 5960 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
( N  +  1 ) )  =  ( A ^ 1 ) )
34 oveq2 5952 . . . . . 6  |-  ( N  =  0  ->  ( A ^ N )  =  ( A ^ 0 ) )
35 exp0 10688 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3634, 35sylan9eqr 2260 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ N )  =  1 )
3736oveq1d 5959 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( ( A ^ N )  x.  A )  =  ( 1  x.  A ) )
3828, 33, 373eqtr4d 2248 . . 3  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
( N  +  1 ) )  =  ( ( A ^ N
)  x.  A ) )
3924, 38jaodan 799 . 2  |-  ( ( A  e.  CC  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( A ^ ( N  + 
1 ) )  =  ( ( A ^ N )  x.  A
) )
401, 39sylan2b 287 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   {csn 3633    X. cxp 4673   ` cfv 5271  (class class class)co 5944   CCcc 7923   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930   NNcn 9036   NN0cn0 9295   ZZ>=cuz 9648    seqcseq 10592   ^cexp 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593  df-exp 10684
This theorem is referenced by:  expcllem  10695  expm1t  10712  expap0  10714  mulexp  10723  expadd  10726  expmul  10729  leexp2r  10738  leexp1a  10739  sqval  10742  cu2  10783  i3  10786  binom3  10802  bernneq  10805  modqexp  10811  expp1d  10819  faclbnd  10886  faclbnd2  10887  faclbnd6  10889  cjexp  11204  absexp  11390  binomlem  11794  geolim  11822  geo2sum  11825  efexp  11993  demoivreALT  12085  prmdvdsexp  12470  oddpwdclemodd  12494  pcexp  12632  numexpp1  12747  2exp7  12757  cnfldexp  14339  expcn  15041  expcncf  15081  dvexp  15183  tangtx  15310  rpcxpmul2  15385  binom4  15451  perfectlem1  15471  perfectlem2  15472
  Copyright terms: Public domain W3C validator