ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsubfacd Unicode version

Theorem mulsubfacd 8310
Description: Multiplication followed by the subtraction of a factor. (Contributed by Alexander van der Vekens, 28-Aug-2018.)
Hypotheses
Ref Expression
mulsubfacd.1  |-  ( ph  ->  A  e.  CC )
mulsubfacd.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
mulsubfacd  |-  ( ph  ->  ( ( A  x.  B )  -  B
)  =  ( ( A  -  1 )  x.  B ) )

Proof of Theorem mulsubfacd
StepHypRef Expression
1 mulsubfacd.1 . . 3  |-  ( ph  ->  A  e.  CC )
2 ax-1cn 7840 . . . 4  |-  1  e.  CC
32a1i 9 . . 3  |-  ( ph  ->  1  e.  CC )
4 mulsubfacd.2 . . 3  |-  ( ph  ->  B  e.  CC )
51, 3, 4subdird 8307 . 2  |-  ( ph  ->  ( ( A  - 
1 )  x.  B
)  =  ( ( A  x.  B )  -  ( 1  x.  B ) ) )
64mulid2d 7911 . . 3  |-  ( ph  ->  ( 1  x.  B
)  =  B )
76oveq2d 5855 . 2  |-  ( ph  ->  ( ( A  x.  B )  -  (
1  x.  B ) )  =  ( ( A  x.  B )  -  B ) )
85, 7eqtr2d 2198 1  |-  ( ph  ->  ( ( A  x.  B )  -  B
)  =  ( ( A  -  1 )  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1342    e. wcel 2135  (class class class)co 5839   CCcc 7745   1c1 7748    x. cmul 7752    - cmin 8063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-setind 4511  ax-resscn 7839  ax-1cn 7840  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-addcom 7847  ax-mulcom 7848  ax-addass 7849  ax-mulass 7850  ax-distr 7851  ax-i2m1 7852  ax-1rid 7854  ax-0id 7855  ax-rnegex 7856  ax-cnre 7858
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-id 4268  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-iota 5150  df-fun 5187  df-fv 5193  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-sub 8065
This theorem is referenced by:  maxabslemlub  11143
  Copyright terms: Public domain W3C validator