ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcpre1 Unicode version

Theorem pcpre1 12430
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
pclem.2  |-  S  =  sup ( A ,  RR ,  <  )
Assertion
Ref Expression
pcpre1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  =  0 )
Distinct variable groups:    n, N    P, n
Allowed substitution hints:    A( n)    S( n)

Proof of Theorem pcpre1
StepHypRef Expression
1 1z 9343 . . . . . . . . . 10  |-  1  e.  ZZ
2 eleq1 2256 . . . . . . . . . 10  |-  ( N  =  1  ->  ( N  e.  ZZ  <->  1  e.  ZZ ) )
31, 2mpbiri 168 . . . . . . . . 9  |-  ( N  =  1  ->  N  e.  ZZ )
4 1ne0 9050 . . . . . . . . . 10  |-  1  =/=  0
5 neeq1 2377 . . . . . . . . . 10  |-  ( N  =  1  ->  ( N  =/=  0  <->  1  =/=  0 ) )
64, 5mpbiri 168 . . . . . . . . 9  |-  ( N  =  1  ->  N  =/=  0 )
73, 6jca 306 . . . . . . . 8  |-  ( N  =  1  ->  ( N  e.  ZZ  /\  N  =/=  0 ) )
8 pclem.1 . . . . . . . . 9  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
9 pclem.2 . . . . . . . . 9  |-  S  =  sup ( A ,  RR ,  <  )
108, 9pcprecl 12427 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
117, 10sylan2 286 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
1211simprd 114 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  ||  N )
13 simpr 110 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  N  =  1 )
1412, 13breqtrd 4055 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  ||  1 )
15 eluz2nn 9631 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
1615adantr 276 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  P  e.  NN )
1711simpld 112 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  e.  NN0 )
1816, 17nnexpcld 10766 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  e.  NN )
1918nnzd 9438 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  e.  ZZ )
20 1nn 8993 . . . . . 6  |-  1  e.  NN
21 dvdsle 11986 . . . . . 6  |-  ( ( ( P ^ S
)  e.  ZZ  /\  1  e.  NN )  ->  ( ( P ^ S )  ||  1  ->  ( P ^ S
)  <_  1 ) )
2219, 20, 21sylancl 413 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( ( P ^ S )  ||  1  ->  ( P ^ S
)  <_  1 ) )
2314, 22mpd 13 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  <_  1 )
2416nncnd 8996 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  P  e.  CC )
2524exp0d 10738 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ 0 )  =  1 )
2623, 25breqtrrd 4057 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  <_  ( P ^ 0 ) )
2716nnred 8995 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  P  e.  RR )
28 0nn0 9255 . . . . 5  |-  0  e.  NN0
2928a1i 9 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
0  e.  NN0 )
30 eluz2gt1 9667 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
3130adantr 276 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
1  <  P )
32 nn0leexp2 10781 . . . 4  |-  ( ( ( P  e.  RR  /\  S  e.  NN0  /\  0  e.  NN0 )  /\  1  <  P )  -> 
( S  <_  0  <->  ( P ^ S )  <_  ( P ^
0 ) ) )
3327, 17, 29, 31, 32syl31anc 1252 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( S  <_  0  <->  ( P ^ S )  <_  ( P ^
0 ) ) )
3426, 33mpbird 167 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  <_  0 )
3510simpld 112 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
367, 35sylan2 286 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  e.  NN0 )
37 nn0le0eq0 9268 . . 3  |-  ( S  e.  NN0  ->  ( S  <_  0  <->  S  = 
0 ) )
3836, 37syl 14 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( S  <_  0  <->  S  =  0 ) )
3934, 38mpbid 147 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    =/= wne 2364   {crab 2476   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   supcsup 7041   RRcr 7871   0cc0 7872   1c1 7873    < clt 8054    <_ cle 8055   NNcn 8982   2c2 9033   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ^cexp 10609    || cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931
This theorem is referenced by:  pczpre  12435  pc1  12443
  Copyright terms: Public domain W3C validator