ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geolim Unicode version

Theorem geolim 11897
Description: The partial sums in the infinite series  1  +  A ^ 1  +  A ^ 2... converge to  ( 1  /  (
1  -  A ) ). (Contributed by NM, 15-May-2006.)
Hypotheses
Ref Expression
geolim.1  |-  ( ph  ->  A  e.  CC )
geolim.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
geolim.3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( A ^ k ) )
Assertion
Ref Expression
geolim  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( 1  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, F    ph, k

Proof of Theorem geolim
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 9703 . . 3  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9404 . . 3  |-  ( ph  ->  0  e.  ZZ )
3 geolim.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
4 geolim.2 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  <  1 )
53, 4expcnv 11890 . . . . 5  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
6 ax-1cn 8038 . . . . . . 7  |-  1  e.  CC
7 subcl 8291 . . . . . . 7  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
86, 3, 7sylancr 414 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
9 1cnd 8108 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
10 1red 8107 . . . . . . . . 9  |-  ( ph  ->  1  e.  RR )
113, 10, 4absltap 11895 . . . . . . . 8  |-  ( ph  ->  A #  1 )
12 apsym 8699 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A #  1  <->  1 #  A ) )
133, 6, 12sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( A #  1  <->  1 #  A ) )
1411, 13mpbid 147 . . . . . . 7  |-  ( ph  ->  1 #  A )
159, 3, 14subap0d 8737 . . . . . 6  |-  ( ph  ->  ( 1  -  A
) #  0 )
163, 8, 15divclapd 8883 . . . . 5  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  CC )
17 nn0ex 9321 . . . . . . 7  |-  NN0  e.  _V
1817mptex 5823 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) )  e.  _V
1918a1i 9 . . . . 5  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A ^
( n  +  1 ) )  /  (
1  -  A ) ) )  e.  _V )
20 simpr 110 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
213adantr 276 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
2221, 20expcld 10840 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
23 oveq2 5965 . . . . . . . 8  |-  ( n  =  j  ->  ( A ^ n )  =  ( A ^ j
) )
24 eqid 2206 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
2523, 24fvmptg 5668 . . . . . . 7  |-  ( ( j  e.  NN0  /\  ( A ^ j )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  j )  =  ( A ^ j ) )
2620, 22, 25syl2anc 411 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  =  ( A ^ j
) )
27 expcl 10724 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ j
)  e.  CC )
283, 27sylan 283 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
2926, 28eqeltrd 2283 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  e.  CC )
30 expp1 10713 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ (
j  +  1 ) )  =  ( ( A ^ j )  x.  A ) )
313, 30sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  =  ( ( A ^
j )  x.  A
) )
3228, 21mulcomd 8114 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ j )  x.  A )  =  ( A  x.  ( A ^ j ) ) )
3331, 32eqtrd 2239 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  =  ( A  x.  ( A ^ j ) ) )
3433oveq1d 5972 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  =  ( ( A  x.  ( A ^ j ) )  /  ( 1  -  A ) ) )
358adantr 276 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1  -  A )  e.  CC )
3615adantr 276 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1  -  A ) #  0 )
3721, 28, 35, 36div23apd 8921 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A  x.  ( A ^ j ) )  /  ( 1  -  A ) )  =  ( ( A  / 
( 1  -  A
) )  x.  ( A ^ j ) ) )
3834, 37eqtrd 2239 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  =  ( ( A  /  (
1  -  A ) )  x.  ( A ^ j ) ) )
39 peano2nn0 9355 . . . . . . . . . 10  |-  ( j  e.  NN0  ->  ( j  +  1 )  e. 
NN0 )
4039adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e. 
NN0 )
4121, 40expcld 10840 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  e.  CC )
4241, 35, 36divclapd 8883 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  e.  CC )
43 oveq1 5964 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  +  1 )  =  ( j  +  1 ) )
4443oveq2d 5973 . . . . . . . . 9  |-  ( n  =  j  ->  ( A ^ ( n  + 
1 ) )  =  ( A ^ (
j  +  1 ) ) )
4544oveq1d 5972 . . . . . . . 8  |-  ( n  =  j  ->  (
( A ^ (
n  +  1 ) )  /  ( 1  -  A ) )  =  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) ) )
46 eqid 2206 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ ( n  + 
1 ) )  / 
( 1  -  A
) ) )
4745, 46fvmptg 5668 . . . . . . 7  |-  ( ( j  e.  NN0  /\  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) )  e.  CC )  ->  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  =  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) ) )
4820, 42, 47syl2anc 411 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  =  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) ) )
4926oveq2d 5973 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A  /  ( 1  -  A ) )  x.  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  j ) )  =  ( ( A  / 
( 1  -  A
) )  x.  ( A ^ j ) ) )
5038, 48, 493eqtr4d 2249 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  =  ( ( A  / 
( 1  -  A
) )  x.  (
( n  e.  NN0  |->  ( A ^ n ) ) `  j ) ) )
511, 2, 5, 16, 19, 29, 50climmulc2 11717 . . . 4  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A ^
( n  +  1 ) )  /  (
1  -  A ) ) )  ~~>  ( ( A  /  ( 1  -  A ) )  x.  0 ) )
5216mul01d 8485 . . . 4  |-  ( ph  ->  ( ( A  / 
( 1  -  A
) )  x.  0 )  =  0 )
5351, 52breqtrd 4077 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A ^
( n  +  1 ) )  /  (
1  -  A ) ) )  ~~>  0 )
548, 15recclapd 8874 . . 3  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  e.  CC )
55 seqex 10616 . . . 4  |-  seq 0
(  +  ,  F
)  e.  _V
5655a1i 9 . . 3  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
_V )
57 expcl 10724 . . . . . 6  |-  ( ( A  e.  CC  /\  ( j  +  1 )  e.  NN0 )  ->  ( A ^ (
j  +  1 ) )  e.  CC )
583, 39, 57syl2an 289 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  e.  CC )
5958, 35, 36divclapd 8883 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  e.  CC )
6048, 59eqeltrd 2283 . . 3  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  e.  CC )
61 nn0cn 9325 . . . . . . . 8  |-  ( j  e.  NN0  ->  j  e.  CC )
6261adantl 277 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  CC )
63 pncan 8298 . . . . . . 7  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  +  1 )  -  1 )  =  j )
6462, 6, 63sylancl 413 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
j  +  1 )  -  1 )  =  j )
6564oveq2d 5973 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 0 ... ( ( j  +  1 )  - 
1 ) )  =  ( 0 ... j
) )
6665sumeq1d 11752 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... (
( j  +  1 )  -  1 ) ) ( A ^
k )  =  sum_ k  e.  ( 0 ... j ) ( A ^ k ) )
67 1cnd 8108 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  1  e.  CC )
6867, 58, 35, 36divsubdirapd 8923 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1  -  ( A ^ ( j  +  1 ) ) )  /  ( 1  -  A ) )  =  ( ( 1  / 
( 1  -  A
) )  -  (
( A ^ (
j  +  1 ) )  /  ( 1  -  A ) ) ) )
6911adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  A #  1
)
7021, 69, 40geoserap 11893 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... (
( j  +  1 )  -  1 ) ) ( A ^
k )  =  ( ( 1  -  ( A ^ ( j  +  1 ) ) )  /  ( 1  -  A ) ) )
7148oveq2d 5973 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1  /  ( 1  -  A ) )  -  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j ) )  =  ( ( 1  /  ( 1  -  A ) )  -  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) ) ) )
7268, 70, 713eqtr4d 2249 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... (
( j  +  1 )  -  1 ) ) ( A ^
k )  =  ( ( 1  /  (
1  -  A ) )  -  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j ) ) )
73 simpll 527 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  ph )
74 elnn0uz 9706 . . . . . . . 8  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
7574biimpri 133 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
7675adantl 277 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  NN0 )
77 geolim.3 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( A ^ k ) )
7873, 76, 77syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( F `  k )  =  ( A ^ k ) )
7920, 1eleqtrdi 2299 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  ( ZZ>= `  0 )
)
8021adantr 276 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  A  e.  CC )
8180, 76expcld 10840 . . . . 5  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( A ^ k )  e.  CC )
8278, 79, 81fsum3ser 11783 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... j
) ( A ^
k )  =  (  seq 0 (  +  ,  F ) `  j ) )
8366, 72, 823eqtr3rd 2248 . . 3  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 0 (  +  ,  F ) `  j
)  =  ( ( 1  /  ( 1  -  A ) )  -  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j ) ) )
841, 2, 53, 54, 56, 60, 83climsubc2 11719 . 2  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( ( 1  /  ( 1  -  A ) )  -  0 ) )
8554subid1d 8392 . 2  |-  ( ph  ->  ( ( 1  / 
( 1  -  A
) )  -  0 )  =  ( 1  /  ( 1  -  A ) ) )
8684, 85breqtrd 4077 1  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( 1  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   _Vcvv 2773   class class class wbr 4051    |-> cmpt 4113   ` cfv 5280  (class class class)co 5957   CCcc 7943   0cc0 7945   1c1 7946    + caddc 7948    x. cmul 7950    < clt 8127    - cmin 8263   # cap 8674    / cdiv 8765   NN0cn0 9315   ZZ>=cuz 9668   ...cfz 10150    seqcseq 10614   ^cexp 10705   abscabs 11383    ~~> cli 11664   sum_csu 11739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-sumdc 11740
This theorem is referenced by:  geolim2  11898  georeclim  11899  geoisum  11903  eflegeo  12087
  Copyright terms: Public domain W3C validator