| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > geolim | Unicode version | ||
| Description: The partial sums in the
infinite series |
| Ref | Expression |
|---|---|
| geolim.1 |
|
| geolim.2 |
|
| geolim.3 |
|
| Ref | Expression |
|---|---|
| geolim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 9653 |
. . 3
| |
| 2 | 0zd 9355 |
. . 3
| |
| 3 | geolim.1 |
. . . . . 6
| |
| 4 | geolim.2 |
. . . . . 6
| |
| 5 | 3, 4 | expcnv 11686 |
. . . . 5
|
| 6 | ax-1cn 7989 |
. . . . . . 7
| |
| 7 | subcl 8242 |
. . . . . . 7
| |
| 8 | 6, 3, 7 | sylancr 414 |
. . . . . 6
|
| 9 | 1cnd 8059 |
. . . . . . 7
| |
| 10 | 1red 8058 |
. . . . . . . . 9
| |
| 11 | 3, 10, 4 | absltap 11691 |
. . . . . . . 8
|
| 12 | apsym 8650 |
. . . . . . . . 9
| |
| 13 | 3, 6, 12 | sylancl 413 |
. . . . . . . 8
|
| 14 | 11, 13 | mpbid 147 |
. . . . . . 7
|
| 15 | 9, 3, 14 | subap0d 8688 |
. . . . . 6
|
| 16 | 3, 8, 15 | divclapd 8834 |
. . . . 5
|
| 17 | nn0ex 9272 |
. . . . . . 7
| |
| 18 | 17 | mptex 5791 |
. . . . . 6
|
| 19 | 18 | a1i 9 |
. . . . 5
|
| 20 | simpr 110 |
. . . . . . 7
| |
| 21 | 3 | adantr 276 |
. . . . . . . 8
|
| 22 | 21, 20 | expcld 10782 |
. . . . . . 7
|
| 23 | oveq2 5933 |
. . . . . . . 8
| |
| 24 | eqid 2196 |
. . . . . . . 8
| |
| 25 | 23, 24 | fvmptg 5640 |
. . . . . . 7
|
| 26 | 20, 22, 25 | syl2anc 411 |
. . . . . 6
|
| 27 | expcl 10666 |
. . . . . . 7
| |
| 28 | 3, 27 | sylan 283 |
. . . . . 6
|
| 29 | 26, 28 | eqeltrd 2273 |
. . . . 5
|
| 30 | expp1 10655 |
. . . . . . . . . 10
| |
| 31 | 3, 30 | sylan 283 |
. . . . . . . . 9
|
| 32 | 28, 21 | mulcomd 8065 |
. . . . . . . . 9
|
| 33 | 31, 32 | eqtrd 2229 |
. . . . . . . 8
|
| 34 | 33 | oveq1d 5940 |
. . . . . . 7
|
| 35 | 8 | adantr 276 |
. . . . . . . 8
|
| 36 | 15 | adantr 276 |
. . . . . . . 8
|
| 37 | 21, 28, 35, 36 | div23apd 8872 |
. . . . . . 7
|
| 38 | 34, 37 | eqtrd 2229 |
. . . . . 6
|
| 39 | peano2nn0 9306 |
. . . . . . . . . 10
| |
| 40 | 39 | adantl 277 |
. . . . . . . . 9
|
| 41 | 21, 40 | expcld 10782 |
. . . . . . . 8
|
| 42 | 41, 35, 36 | divclapd 8834 |
. . . . . . 7
|
| 43 | oveq1 5932 |
. . . . . . . . . 10
| |
| 44 | 43 | oveq2d 5941 |
. . . . . . . . 9
|
| 45 | 44 | oveq1d 5940 |
. . . . . . . 8
|
| 46 | eqid 2196 |
. . . . . . . 8
| |
| 47 | 45, 46 | fvmptg 5640 |
. . . . . . 7
|
| 48 | 20, 42, 47 | syl2anc 411 |
. . . . . 6
|
| 49 | 26 | oveq2d 5941 |
. . . . . 6
|
| 50 | 38, 48, 49 | 3eqtr4d 2239 |
. . . . 5
|
| 51 | 1, 2, 5, 16, 19, 29, 50 | climmulc2 11513 |
. . . 4
|
| 52 | 16 | mul01d 8436 |
. . . 4
|
| 53 | 51, 52 | breqtrd 4060 |
. . 3
|
| 54 | 8, 15 | recclapd 8825 |
. . 3
|
| 55 | seqex 10558 |
. . . 4
| |
| 56 | 55 | a1i 9 |
. . 3
|
| 57 | expcl 10666 |
. . . . . 6
| |
| 58 | 3, 39, 57 | syl2an 289 |
. . . . 5
|
| 59 | 58, 35, 36 | divclapd 8834 |
. . . 4
|
| 60 | 48, 59 | eqeltrd 2273 |
. . 3
|
| 61 | nn0cn 9276 |
. . . . . . . 8
| |
| 62 | 61 | adantl 277 |
. . . . . . 7
|
| 63 | pncan 8249 |
. . . . . . 7
| |
| 64 | 62, 6, 63 | sylancl 413 |
. . . . . 6
|
| 65 | 64 | oveq2d 5941 |
. . . . 5
|
| 66 | 65 | sumeq1d 11548 |
. . . 4
|
| 67 | 1cnd 8059 |
. . . . . 6
| |
| 68 | 67, 58, 35, 36 | divsubdirapd 8874 |
. . . . 5
|
| 69 | 11 | adantr 276 |
. . . . . 6
|
| 70 | 21, 69, 40 | geoserap 11689 |
. . . . 5
|
| 71 | 48 | oveq2d 5941 |
. . . . 5
|
| 72 | 68, 70, 71 | 3eqtr4d 2239 |
. . . 4
|
| 73 | simpll 527 |
. . . . . 6
| |
| 74 | elnn0uz 9656 |
. . . . . . . 8
| |
| 75 | 74 | biimpri 133 |
. . . . . . 7
|
| 76 | 75 | adantl 277 |
. . . . . 6
|
| 77 | geolim.3 |
. . . . . 6
| |
| 78 | 73, 76, 77 | syl2anc 411 |
. . . . 5
|
| 79 | 20, 1 | eleqtrdi 2289 |
. . . . 5
|
| 80 | 21 | adantr 276 |
. . . . . 6
|
| 81 | 80, 76 | expcld 10782 |
. . . . 5
|
| 82 | 78, 79, 81 | fsum3ser 11579 |
. . . 4
|
| 83 | 66, 72, 82 | 3eqtr3rd 2238 |
. . 3
|
| 84 | 1, 2, 53, 54, 56, 60, 83 | climsubc2 11515 |
. 2
|
| 85 | 54 | subid1d 8343 |
. 2
|
| 86 | 84, 85 | breqtrd 4060 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 |
| This theorem is referenced by: geolim2 11694 georeclim 11695 geoisum 11699 eflegeo 11883 |
| Copyright terms: Public domain | W3C validator |