ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geolim Unicode version

Theorem geolim 11312
Description: The partial sums in the infinite series  1  +  A ^ 1  +  A ^ 2... converge to  ( 1  /  (
1  -  A ) ). (Contributed by NM, 15-May-2006.)
Hypotheses
Ref Expression
geolim.1  |-  ( ph  ->  A  e.  CC )
geolim.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
geolim.3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( A ^ k ) )
Assertion
Ref Expression
geolim  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( 1  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, F    ph, k

Proof of Theorem geolim
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 9384 . . 3  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9090 . . 3  |-  ( ph  ->  0  e.  ZZ )
3 geolim.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
4 geolim.2 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  <  1 )
53, 4expcnv 11305 . . . . 5  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
6 ax-1cn 7737 . . . . . . 7  |-  1  e.  CC
7 subcl 7985 . . . . . . 7  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
86, 3, 7sylancr 411 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
9 1cnd 7806 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
10 1red 7805 . . . . . . . . 9  |-  ( ph  ->  1  e.  RR )
113, 10, 4absltap 11310 . . . . . . . 8  |-  ( ph  ->  A #  1 )
12 apsym 8392 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A #  1  <->  1 #  A ) )
133, 6, 12sylancl 410 . . . . . . . 8  |-  ( ph  ->  ( A #  1  <->  1 #  A ) )
1411, 13mpbid 146 . . . . . . 7  |-  ( ph  ->  1 #  A )
159, 3, 14subap0d 8430 . . . . . 6  |-  ( ph  ->  ( 1  -  A
) #  0 )
163, 8, 15divclapd 8574 . . . . 5  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  CC )
17 nn0ex 9007 . . . . . . 7  |-  NN0  e.  _V
1817mptex 5654 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) )  e.  _V
1918a1i 9 . . . . 5  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A ^
( n  +  1 ) )  /  (
1  -  A ) ) )  e.  _V )
20 simpr 109 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
213adantr 274 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
2221, 20expcld 10455 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
23 oveq2 5790 . . . . . . . 8  |-  ( n  =  j  ->  ( A ^ n )  =  ( A ^ j
) )
24 eqid 2140 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
2523, 24fvmptg 5505 . . . . . . 7  |-  ( ( j  e.  NN0  /\  ( A ^ j )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  j )  =  ( A ^ j ) )
2620, 22, 25syl2anc 409 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  =  ( A ^ j
) )
27 expcl 10342 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ j
)  e.  CC )
283, 27sylan 281 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
2926, 28eqeltrd 2217 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  e.  CC )
30 expp1 10331 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ (
j  +  1 ) )  =  ( ( A ^ j )  x.  A ) )
313, 30sylan 281 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  =  ( ( A ^
j )  x.  A
) )
3228, 21mulcomd 7811 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ j )  x.  A )  =  ( A  x.  ( A ^ j ) ) )
3331, 32eqtrd 2173 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  =  ( A  x.  ( A ^ j ) ) )
3433oveq1d 5797 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  =  ( ( A  x.  ( A ^ j ) )  /  ( 1  -  A ) ) )
358adantr 274 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1  -  A )  e.  CC )
3615adantr 274 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1  -  A ) #  0 )
3721, 28, 35, 36div23apd 8612 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A  x.  ( A ^ j ) )  /  ( 1  -  A ) )  =  ( ( A  / 
( 1  -  A
) )  x.  ( A ^ j ) ) )
3834, 37eqtrd 2173 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  =  ( ( A  /  (
1  -  A ) )  x.  ( A ^ j ) ) )
39 peano2nn0 9041 . . . . . . . . . 10  |-  ( j  e.  NN0  ->  ( j  +  1 )  e. 
NN0 )
4039adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e. 
NN0 )
4121, 40expcld 10455 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  e.  CC )
4241, 35, 36divclapd 8574 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  e.  CC )
43 oveq1 5789 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  +  1 )  =  ( j  +  1 ) )
4443oveq2d 5798 . . . . . . . . 9  |-  ( n  =  j  ->  ( A ^ ( n  + 
1 ) )  =  ( A ^ (
j  +  1 ) ) )
4544oveq1d 5797 . . . . . . . 8  |-  ( n  =  j  ->  (
( A ^ (
n  +  1 ) )  /  ( 1  -  A ) )  =  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) ) )
46 eqid 2140 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ ( n  + 
1 ) )  / 
( 1  -  A
) ) )
4745, 46fvmptg 5505 . . . . . . 7  |-  ( ( j  e.  NN0  /\  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) )  e.  CC )  ->  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  =  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) ) )
4820, 42, 47syl2anc 409 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  =  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) ) )
4926oveq2d 5798 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A  /  ( 1  -  A ) )  x.  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  j ) )  =  ( ( A  / 
( 1  -  A
) )  x.  ( A ^ j ) ) )
5038, 48, 493eqtr4d 2183 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  =  ( ( A  / 
( 1  -  A
) )  x.  (
( n  e.  NN0  |->  ( A ^ n ) ) `  j ) ) )
511, 2, 5, 16, 19, 29, 50climmulc2 11132 . . . 4  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A ^
( n  +  1 ) )  /  (
1  -  A ) ) )  ~~>  ( ( A  /  ( 1  -  A ) )  x.  0 ) )
5216mul01d 8179 . . . 4  |-  ( ph  ->  ( ( A  / 
( 1  -  A
) )  x.  0 )  =  0 )
5351, 52breqtrd 3962 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A ^
( n  +  1 ) )  /  (
1  -  A ) ) )  ~~>  0 )
548, 15recclapd 8565 . . 3  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  e.  CC )
55 seqex 10251 . . . 4  |-  seq 0
(  +  ,  F
)  e.  _V
5655a1i 9 . . 3  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
_V )
57 expcl 10342 . . . . . 6  |-  ( ( A  e.  CC  /\  ( j  +  1 )  e.  NN0 )  ->  ( A ^ (
j  +  1 ) )  e.  CC )
583, 39, 57syl2an 287 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  e.  CC )
5958, 35, 36divclapd 8574 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  e.  CC )
6048, 59eqeltrd 2217 . . 3  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  e.  CC )
61 nn0cn 9011 . . . . . . . 8  |-  ( j  e.  NN0  ->  j  e.  CC )
6261adantl 275 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  CC )
63 pncan 7992 . . . . . . 7  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  +  1 )  -  1 )  =  j )
6462, 6, 63sylancl 410 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
j  +  1 )  -  1 )  =  j )
6564oveq2d 5798 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 0 ... ( ( j  +  1 )  - 
1 ) )  =  ( 0 ... j
) )
6665sumeq1d 11167 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... (
( j  +  1 )  -  1 ) ) ( A ^
k )  =  sum_ k  e.  ( 0 ... j ) ( A ^ k ) )
67 1cnd 7806 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  1  e.  CC )
6867, 58, 35, 36divsubdirapd 8614 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1  -  ( A ^ ( j  +  1 ) ) )  /  ( 1  -  A ) )  =  ( ( 1  / 
( 1  -  A
) )  -  (
( A ^ (
j  +  1 ) )  /  ( 1  -  A ) ) ) )
6911adantr 274 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  A #  1
)
7021, 69, 40geoserap 11308 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... (
( j  +  1 )  -  1 ) ) ( A ^
k )  =  ( ( 1  -  ( A ^ ( j  +  1 ) ) )  /  ( 1  -  A ) ) )
7148oveq2d 5798 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1  /  ( 1  -  A ) )  -  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j ) )  =  ( ( 1  /  ( 1  -  A ) )  -  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) ) ) )
7268, 70, 713eqtr4d 2183 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... (
( j  +  1 )  -  1 ) ) ( A ^
k )  =  ( ( 1  /  (
1  -  A ) )  -  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j ) ) )
73 simpll 519 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  ph )
74 elnn0uz 9387 . . . . . . . 8  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
7574biimpri 132 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
7675adantl 275 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  NN0 )
77 geolim.3 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( A ^ k ) )
7873, 76, 77syl2anc 409 . . . . 5  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( F `  k )  =  ( A ^ k ) )
7920, 1eleqtrdi 2233 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  ( ZZ>= `  0 )
)
8021adantr 274 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  A  e.  CC )
8180, 76expcld 10455 . . . . 5  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( A ^ k )  e.  CC )
8278, 79, 81fsum3ser 11198 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... j
) ( A ^
k )  =  (  seq 0 (  +  ,  F ) `  j ) )
8366, 72, 823eqtr3rd 2182 . . 3  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 0 (  +  ,  F ) `  j
)  =  ( ( 1  /  ( 1  -  A ) )  -  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j ) ) )
841, 2, 53, 54, 56, 60, 83climsubc2 11134 . 2  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( ( 1  /  ( 1  -  A ) )  -  0 ) )
8554subid1d 8086 . 2  |-  ( ph  ->  ( ( 1  / 
( 1  -  A
) )  -  0 )  =  ( 1  /  ( 1  -  A ) ) )
8684, 85breqtrd 3962 1  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( 1  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   _Vcvv 2689   class class class wbr 3937    |-> cmpt 3997   ` cfv 5131  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    - cmin 7957   # cap 8367    / cdiv 8456   NN0cn0 9001   ZZ>=cuz 9350   ...cfz 9821    seqcseq 10249   ^cexp 10323   abscabs 10801    ~~> cli 11079   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  geolim2  11313  georeclim  11314  geoisum  11318  eflegeo  11444
  Copyright terms: Public domain W3C validator