ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geolim Unicode version

Theorem geolim 11521
Description: The partial sums in the infinite series  1  +  A ^ 1  +  A ^ 2... converge to  ( 1  /  (
1  -  A ) ). (Contributed by NM, 15-May-2006.)
Hypotheses
Ref Expression
geolim.1  |-  ( ph  ->  A  e.  CC )
geolim.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
geolim.3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( A ^ k ) )
Assertion
Ref Expression
geolim  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( 1  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, F    ph, k

Proof of Theorem geolim
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 9564 . . 3  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9267 . . 3  |-  ( ph  ->  0  e.  ZZ )
3 geolim.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
4 geolim.2 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  <  1 )
53, 4expcnv 11514 . . . . 5  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
6 ax-1cn 7906 . . . . . . 7  |-  1  e.  CC
7 subcl 8158 . . . . . . 7  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
86, 3, 7sylancr 414 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
9 1cnd 7975 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
10 1red 7974 . . . . . . . . 9  |-  ( ph  ->  1  e.  RR )
113, 10, 4absltap 11519 . . . . . . . 8  |-  ( ph  ->  A #  1 )
12 apsym 8565 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A #  1  <->  1 #  A ) )
133, 6, 12sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( A #  1  <->  1 #  A ) )
1411, 13mpbid 147 . . . . . . 7  |-  ( ph  ->  1 #  A )
159, 3, 14subap0d 8603 . . . . . 6  |-  ( ph  ->  ( 1  -  A
) #  0 )
163, 8, 15divclapd 8749 . . . . 5  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  CC )
17 nn0ex 9184 . . . . . . 7  |-  NN0  e.  _V
1817mptex 5744 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) )  e.  _V
1918a1i 9 . . . . 5  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A ^
( n  +  1 ) )  /  (
1  -  A ) ) )  e.  _V )
20 simpr 110 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
213adantr 276 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
2221, 20expcld 10656 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
23 oveq2 5885 . . . . . . . 8  |-  ( n  =  j  ->  ( A ^ n )  =  ( A ^ j
) )
24 eqid 2177 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
2523, 24fvmptg 5594 . . . . . . 7  |-  ( ( j  e.  NN0  /\  ( A ^ j )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  j )  =  ( A ^ j ) )
2620, 22, 25syl2anc 411 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  =  ( A ^ j
) )
27 expcl 10540 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ j
)  e.  CC )
283, 27sylan 283 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
2926, 28eqeltrd 2254 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  e.  CC )
30 expp1 10529 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ (
j  +  1 ) )  =  ( ( A ^ j )  x.  A ) )
313, 30sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  =  ( ( A ^
j )  x.  A
) )
3228, 21mulcomd 7981 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ j )  x.  A )  =  ( A  x.  ( A ^ j ) ) )
3331, 32eqtrd 2210 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  =  ( A  x.  ( A ^ j ) ) )
3433oveq1d 5892 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  =  ( ( A  x.  ( A ^ j ) )  /  ( 1  -  A ) ) )
358adantr 276 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1  -  A )  e.  CC )
3615adantr 276 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1  -  A ) #  0 )
3721, 28, 35, 36div23apd 8787 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A  x.  ( A ^ j ) )  /  ( 1  -  A ) )  =  ( ( A  / 
( 1  -  A
) )  x.  ( A ^ j ) ) )
3834, 37eqtrd 2210 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  =  ( ( A  /  (
1  -  A ) )  x.  ( A ^ j ) ) )
39 peano2nn0 9218 . . . . . . . . . 10  |-  ( j  e.  NN0  ->  ( j  +  1 )  e. 
NN0 )
4039adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e. 
NN0 )
4121, 40expcld 10656 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  e.  CC )
4241, 35, 36divclapd 8749 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  e.  CC )
43 oveq1 5884 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  +  1 )  =  ( j  +  1 ) )
4443oveq2d 5893 . . . . . . . . 9  |-  ( n  =  j  ->  ( A ^ ( n  + 
1 ) )  =  ( A ^ (
j  +  1 ) ) )
4544oveq1d 5892 . . . . . . . 8  |-  ( n  =  j  ->  (
( A ^ (
n  +  1 ) )  /  ( 1  -  A ) )  =  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) ) )
46 eqid 2177 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ ( n  + 
1 ) )  / 
( 1  -  A
) ) )
4745, 46fvmptg 5594 . . . . . . 7  |-  ( ( j  e.  NN0  /\  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) )  e.  CC )  ->  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  =  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) ) )
4820, 42, 47syl2anc 411 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  =  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) ) )
4926oveq2d 5893 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A  /  ( 1  -  A ) )  x.  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  j ) )  =  ( ( A  / 
( 1  -  A
) )  x.  ( A ^ j ) ) )
5038, 48, 493eqtr4d 2220 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  =  ( ( A  / 
( 1  -  A
) )  x.  (
( n  e.  NN0  |->  ( A ^ n ) ) `  j ) ) )
511, 2, 5, 16, 19, 29, 50climmulc2 11341 . . . 4  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A ^
( n  +  1 ) )  /  (
1  -  A ) ) )  ~~>  ( ( A  /  ( 1  -  A ) )  x.  0 ) )
5216mul01d 8352 . . . 4  |-  ( ph  ->  ( ( A  / 
( 1  -  A
) )  x.  0 )  =  0 )
5351, 52breqtrd 4031 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A ^
( n  +  1 ) )  /  (
1  -  A ) ) )  ~~>  0 )
548, 15recclapd 8740 . . 3  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  e.  CC )
55 seqex 10449 . . . 4  |-  seq 0
(  +  ,  F
)  e.  _V
5655a1i 9 . . 3  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
_V )
57 expcl 10540 . . . . . 6  |-  ( ( A  e.  CC  /\  ( j  +  1 )  e.  NN0 )  ->  ( A ^ (
j  +  1 ) )  e.  CC )
583, 39, 57syl2an 289 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  e.  CC )
5958, 35, 36divclapd 8749 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  e.  CC )
6048, 59eqeltrd 2254 . . 3  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  e.  CC )
61 nn0cn 9188 . . . . . . . 8  |-  ( j  e.  NN0  ->  j  e.  CC )
6261adantl 277 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  CC )
63 pncan 8165 . . . . . . 7  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  +  1 )  -  1 )  =  j )
6462, 6, 63sylancl 413 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
j  +  1 )  -  1 )  =  j )
6564oveq2d 5893 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 0 ... ( ( j  +  1 )  - 
1 ) )  =  ( 0 ... j
) )
6665sumeq1d 11376 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... (
( j  +  1 )  -  1 ) ) ( A ^
k )  =  sum_ k  e.  ( 0 ... j ) ( A ^ k ) )
67 1cnd 7975 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  1  e.  CC )
6867, 58, 35, 36divsubdirapd 8789 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1  -  ( A ^ ( j  +  1 ) ) )  /  ( 1  -  A ) )  =  ( ( 1  / 
( 1  -  A
) )  -  (
( A ^ (
j  +  1 ) )  /  ( 1  -  A ) ) ) )
6911adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  A #  1
)
7021, 69, 40geoserap 11517 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... (
( j  +  1 )  -  1 ) ) ( A ^
k )  =  ( ( 1  -  ( A ^ ( j  +  1 ) ) )  /  ( 1  -  A ) ) )
7148oveq2d 5893 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1  /  ( 1  -  A ) )  -  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j ) )  =  ( ( 1  /  ( 1  -  A ) )  -  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) ) ) )
7268, 70, 713eqtr4d 2220 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... (
( j  +  1 )  -  1 ) ) ( A ^
k )  =  ( ( 1  /  (
1  -  A ) )  -  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j ) ) )
73 simpll 527 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  ph )
74 elnn0uz 9567 . . . . . . . 8  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
7574biimpri 133 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
7675adantl 277 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  NN0 )
77 geolim.3 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( A ^ k ) )
7873, 76, 77syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( F `  k )  =  ( A ^ k ) )
7920, 1eleqtrdi 2270 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  ( ZZ>= `  0 )
)
8021adantr 276 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  A  e.  CC )
8180, 76expcld 10656 . . . . 5  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( A ^ k )  e.  CC )
8278, 79, 81fsum3ser 11407 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... j
) ( A ^
k )  =  (  seq 0 (  +  ,  F ) `  j ) )
8366, 72, 823eqtr3rd 2219 . . 3  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 0 (  +  ,  F ) `  j
)  =  ( ( 1  /  ( 1  -  A ) )  -  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j ) ) )
841, 2, 53, 54, 56, 60, 83climsubc2 11343 . 2  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( ( 1  /  ( 1  -  A ) )  -  0 ) )
8554subid1d 8259 . 2  |-  ( ph  ->  ( ( 1  / 
( 1  -  A
) )  -  0 )  =  ( 1  /  ( 1  -  A ) ) )
8684, 85breqtrd 4031 1  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( 1  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2739   class class class wbr 4005    |-> cmpt 4066   ` cfv 5218  (class class class)co 5877   CCcc 7811   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    < clt 7994    - cmin 8130   # cap 8540    / cdiv 8631   NN0cn0 9178   ZZ>=cuz 9530   ...cfz 10010    seqcseq 10447   ^cexp 10521   abscabs 11008    ~~> cli 11288   sum_csu 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364
This theorem is referenced by:  geolim2  11522  georeclim  11523  geoisum  11527  eflegeo  11711
  Copyright terms: Public domain W3C validator