Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2re | Unicode version |
Description: The number 2 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2re |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8912 | . 2 | |
2 | 1re 7894 | . . 3 | |
3 | 2, 2 | readdcli 7908 | . 2 |
4 | 1, 3 | eqeltri 2238 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 (class class class)co 5841 cr 7748 c1 7750 caddc 7752 c2 8904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-2 8912 |
This theorem is referenced by: 2cn 8924 3re 8927 2ne0 8945 2ap0 8946 3pos 8947 2lt3 9023 1lt3 9024 2lt4 9026 1lt4 9027 2lt5 9030 2lt6 9035 1lt6 9036 2lt7 9041 1lt7 9042 2lt8 9048 1lt8 9049 2lt9 9056 1lt9 9057 1ap2 9060 1le2 9061 2rene0 9063 halfre 9066 halfgt0 9068 halflt1 9070 rehalfcl 9080 halfpos2 9083 halfnneg2 9085 addltmul 9089 nominpos 9090 avglt1 9091 avglt2 9092 div4p1lem1div2 9106 nn0lele2xi 9161 nn0ge2m1nn 9170 halfnz 9283 3halfnz 9284 2lt10 9455 1lt10 9456 eluz4eluz2 9501 uzuzle23 9505 uz3m2nn 9507 2rp 9590 xleaddadd 9819 fztpval 10014 fz0to4untppr 10055 fzo0to42pr 10151 qbtwnrelemcalc 10187 qbtwnre 10188 2tnp1ge0ge0 10232 flhalf 10233 fldiv4p1lem1div2 10236 mulp1mod1 10296 expubnd 10508 nn0opthlem2d 10630 faclbnd2 10651 4bc2eq6 10683 cvg1nlemres 10923 resqrexlemover 10948 resqrexlemga 10961 sqrt4 10985 sqrt2gt1lt2 10987 abstri 11042 amgm2 11056 maxabslemlub 11145 maxltsup 11156 bdtrilem 11176 efcllemp 11595 efcllem 11596 ege2le3 11608 ef01bndlem 11693 cos01bnd 11695 cos2bnd 11697 cos01gt0 11699 sin02gt0 11700 sincos2sgn 11702 sin4lt0 11703 cos12dec 11704 eirraplem 11713 egt2lt3 11716 epos 11717 ene1 11721 eap1 11722 oexpneg 11810 oddge22np1 11814 evennn02n 11815 evennn2n 11816 nn0ehalf 11836 nno 11839 nn0o 11840 nn0oddm1d2 11842 nnoddm1d2 11843 flodddiv4t2lthalf 11870 6gcd4e2 11924 ncoprmgcdne1b 12017 prmdc 12058 3lcm2e6 12088 sqrt2irrlem 12089 sqrt2re 12091 sqrt2irraplemnn 12107 sqrt2irrap 12108 plusgndxnmulrndx 12503 bl2in 13003 reeff1o 13294 cosz12 13301 sin0pilem1 13302 sin0pilem2 13303 pilem3 13304 pipos 13309 sinhalfpilem 13312 sincosq1lem 13346 sincosq4sgn 13350 sinq12gt0 13351 cosq23lt0 13354 coseq00topi 13356 coseq0negpitopi 13357 tangtx 13359 sincos4thpi 13361 tan4thpi 13362 sincos6thpi 13363 cosordlem 13370 cosq34lt1 13371 cos02pilt1 13372 cos0pilt1 13373 2logb9irr 13489 2logb3irr 13491 2logb9irrALT 13492 sqrt2cxp2logb9e3 13493 2logb9irrap 13495 lgslem1 13501 lgsdirprm 13535 ex-fl 13566 taupi 13909 |
Copyright terms: Public domain | W3C validator |