Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsel Unicode version

Theorem nninfsel 13551
Description:  E is a selection function for ℕ. Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
nninfsel.q  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
nninfsel.1  |-  ( ph  ->  ( Q `  ( E `  Q )
)  =  1o )
Assertion
Ref Expression
nninfsel  |-  ( ph  ->  A. p  e.  ( Q `  p
)  =  1o )
Distinct variable groups:    Q, i, k, n, q    i, p,
ph    ph, k, n
Allowed substitution hints:    ph( q)    Q( p)    E( i, k, n, q, p)

Proof of Theorem nninfsel
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nninfsel.q . 2  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
2 nninfsel.e . . . . 5  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
3 nninfsel.1 . . . . 5  |-  ( ph  ->  ( Q `  ( E `  Q )
)  =  1o )
42, 1, 3nninfsellemeqinf 13550 . . . 4  |-  ( ph  ->  ( E `  Q
)  =  ( i  e.  om  |->  1o ) )
54fveq2d 5469 . . 3  |-  ( ph  ->  ( Q `  ( E `  Q )
)  =  ( Q `
 ( i  e. 
om  |->  1o ) ) )
65, 3eqtr3d 2192 . 2  |-  ( ph  ->  ( Q `  (
i  e.  om  |->  1o ) )  =  1o )
71adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  Q  e.  ( 2o  ^m ) )
83adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  ( Q `  ( E `  Q
) )  =  1o )
9 simpr 109 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  x  e.  om )
102, 7, 8, 9nninfsellemqall 13549 . . 3  |-  ( (
ph  /\  x  e.  om )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o )
1110ralrimiva 2530 . 2  |-  ( ph  ->  A. x  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o )
121, 6, 11nninfall 13543 1  |-  ( ph  ->  A. p  e.  ( Q `  p
)  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   A.wral 2435   (/)c0 3394   ifcif 3505    |-> cmpt 4025   suc csuc 4324   omcom 4547   ` cfv 5167  (class class class)co 5818   1oc1o 6350   2oc2o 6351    ^m cmap 6586  ℕxnninf 7053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1o 6357  df-2o 6358  df-map 6588  df-nninf 7054
This theorem is referenced by:  nninfomnilem  13552
  Copyright terms: Public domain W3C validator