Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsel Unicode version

Theorem nninfsel 14050
Description:  E is a selection function for ℕ. Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
nninfsel.q  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
nninfsel.1  |-  ( ph  ->  ( Q `  ( E `  Q )
)  =  1o )
Assertion
Ref Expression
nninfsel  |-  ( ph  ->  A. p  e.  ( Q `  p
)  =  1o )
Distinct variable groups:    Q, i, k, n, q    i, p,
ph    ph, k, n
Allowed substitution hints:    ph( q)    Q( p)    E( i, k, n, q, p)

Proof of Theorem nninfsel
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nninfsel.q . 2  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
2 nninfsel.e . . . . 5  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
3 nninfsel.1 . . . . 5  |-  ( ph  ->  ( Q `  ( E `  Q )
)  =  1o )
42, 1, 3nninfsellemeqinf 14049 . . . 4  |-  ( ph  ->  ( E `  Q
)  =  ( i  e.  om  |->  1o ) )
54fveq2d 5500 . . 3  |-  ( ph  ->  ( Q `  ( E `  Q )
)  =  ( Q `
 ( i  e. 
om  |->  1o ) ) )
65, 3eqtr3d 2205 . 2  |-  ( ph  ->  ( Q `  (
i  e.  om  |->  1o ) )  =  1o )
71adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  Q  e.  ( 2o  ^m ) )
83adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  ( Q `  ( E `  Q
) )  =  1o )
9 simpr 109 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  x  e.  om )
102, 7, 8, 9nninfsellemqall 14048 . . 3  |-  ( (
ph  /\  x  e.  om )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o )
1110ralrimiva 2543 . 2  |-  ( ph  ->  A. x  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o )
121, 6, 11nninfall 14042 1  |-  ( ph  ->  A. p  e.  ( Q `  p
)  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   (/)c0 3414   ifcif 3526    |-> cmpt 4050   suc csuc 4350   omcom 4574   ` cfv 5198  (class class class)co 5853   1oc1o 6388   2oc2o 6389    ^m cmap 6626  ℕxnninf 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1o 6395  df-2o 6396  df-map 6628  df-nninf 7097
This theorem is referenced by:  nninfomnilem  14051
  Copyright terms: Public domain W3C validator