Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsel GIF version

Theorem nninfsel 15038
Description: 𝐸 is a selection function for . Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
nninfsel.q (𝜑𝑄 ∈ (2o𝑚))
nninfsel.1 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
Assertion
Ref Expression
nninfsel (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
Distinct variable groups:   𝑄,𝑖,𝑘,𝑛,𝑞   𝑖,𝑝,𝜑   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑞)   𝑄(𝑝)   𝐸(𝑖,𝑘,𝑛,𝑞,𝑝)

Proof of Theorem nninfsel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nninfsel.q . 2 (𝜑𝑄 ∈ (2o𝑚))
2 nninfsel.e . . . . 5 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
3 nninfsel.1 . . . . 5 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
42, 1, 3nninfsellemeqinf 15037 . . . 4 (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ 1o))
54fveq2d 5531 . . 3 (𝜑 → (𝑄‘(𝐸𝑄)) = (𝑄‘(𝑖 ∈ ω ↦ 1o)))
65, 3eqtr3d 2222 . 2 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ 1o)) = 1o)
71adantr 276 . . . 4 ((𝜑𝑥 ∈ ω) → 𝑄 ∈ (2o𝑚))
83adantr 276 . . . 4 ((𝜑𝑥 ∈ ω) → (𝑄‘(𝐸𝑄)) = 1o)
9 simpr 110 . . . 4 ((𝜑𝑥 ∈ ω) → 𝑥 ∈ ω)
102, 7, 8, 9nninfsellemqall 15036 . . 3 ((𝜑𝑥 ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o)
1110ralrimiva 2560 . 2 (𝜑 → ∀𝑥 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o)
121, 6, 11nninfall 15030 1 (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158  wral 2465  c0 3434  ifcif 3546  cmpt 4076  suc csuc 4377  ωcom 4601  cfv 5228  (class class class)co 5888  1oc1o 6423  2oc2o 6424  𝑚 cmap 6661  xnninf 7131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1o 6430  df-2o 6431  df-map 6663  df-nninf 7132
This theorem is referenced by:  nninfomnilem  15039
  Copyright terms: Public domain W3C validator