![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfsel | GIF version |
Description: 𝐸 is a selection function for ℕ∞. Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.) |
Ref | Expression |
---|---|
nninfsel.e | ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) |
nninfsel.q | ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) |
nninfsel.1 | ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) |
Ref | Expression |
---|---|
nninfsel | ⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfsel.q | . 2 ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) | |
2 | nninfsel.e | . . . . 5 ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) | |
3 | nninfsel.1 | . . . . 5 ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) | |
4 | 2, 1, 3 | nninfsellemeqinf 15576 | . . . 4 ⊢ (𝜑 → (𝐸‘𝑄) = (𝑖 ∈ ω ↦ 1o)) |
5 | 4 | fveq2d 5559 | . . 3 ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = (𝑄‘(𝑖 ∈ ω ↦ 1o))) |
6 | 5, 3 | eqtr3d 2228 | . 2 ⊢ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ 1o)) = 1o) |
7 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) |
8 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑄‘(𝐸‘𝑄)) = 1o) |
9 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ ω) | |
10 | 2, 7, 8, 9 | nninfsellemqall 15575 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = 1o) |
11 | 10 | ralrimiva 2567 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = 1o) |
12 | 1, 6, 11 | nninfall 15569 | 1 ⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∅c0 3447 ifcif 3558 ↦ cmpt 4091 suc csuc 4397 ωcom 4623 ‘cfv 5255 (class class class)co 5919 1oc1o 6464 2oc2o 6465 ↑𝑚 cmap 6704 ℕ∞xnninf 7180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1o 6471 df-2o 6472 df-map 6706 df-nninf 7181 |
This theorem is referenced by: nninfomnilem 15578 |
Copyright terms: Public domain | W3C validator |