Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsel GIF version

Theorem nninfsel 15954
Description: 𝐸 is a selection function for . Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
nninfsel.q (𝜑𝑄 ∈ (2o𝑚))
nninfsel.1 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
Assertion
Ref Expression
nninfsel (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
Distinct variable groups:   𝑄,𝑖,𝑘,𝑛,𝑞   𝑖,𝑝,𝜑   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑞)   𝑄(𝑝)   𝐸(𝑖,𝑘,𝑛,𝑞,𝑝)

Proof of Theorem nninfsel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nninfsel.q . 2 (𝜑𝑄 ∈ (2o𝑚))
2 nninfsel.e . . . . 5 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
3 nninfsel.1 . . . . 5 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
42, 1, 3nninfsellemeqinf 15953 . . . 4 (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ 1o))
54fveq2d 5580 . . 3 (𝜑 → (𝑄‘(𝐸𝑄)) = (𝑄‘(𝑖 ∈ ω ↦ 1o)))
65, 3eqtr3d 2240 . 2 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ 1o)) = 1o)
71adantr 276 . . . 4 ((𝜑𝑥 ∈ ω) → 𝑄 ∈ (2o𝑚))
83adantr 276 . . . 4 ((𝜑𝑥 ∈ ω) → (𝑄‘(𝐸𝑄)) = 1o)
9 simpr 110 . . . 4 ((𝜑𝑥 ∈ ω) → 𝑥 ∈ ω)
102, 7, 8, 9nninfsellemqall 15952 . . 3 ((𝜑𝑥 ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o)
1110ralrimiva 2579 . 2 (𝜑 → ∀𝑥 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o)
121, 6, 11nninfall 15946 1 (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wral 2484  c0 3460  ifcif 3571  cmpt 4105  suc csuc 4412  ωcom 4638  cfv 5271  (class class class)co 5944  1oc1o 6495  2oc2o 6496  𝑚 cmap 6735  xnninf 7221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1o 6502  df-2o 6503  df-map 6737  df-nninf 7222
This theorem is referenced by:  nninfomnilem  15955
  Copyright terms: Public domain W3C validator