| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfsel | GIF version | ||
| Description: 𝐸 is a selection function for ℕ∞. Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninfsel.e | ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) |
| nninfsel.q | ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) |
| nninfsel.1 | ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) |
| Ref | Expression |
|---|---|
| nninfsel | ⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfsel.q | . 2 ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) | |
| 2 | nninfsel.e | . . . . 5 ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) | |
| 3 | nninfsel.1 | . . . . 5 ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) | |
| 4 | 2, 1, 3 | nninfsellemeqinf 15660 | . . . 4 ⊢ (𝜑 → (𝐸‘𝑄) = (𝑖 ∈ ω ↦ 1o)) |
| 5 | 4 | fveq2d 5562 | . . 3 ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = (𝑄‘(𝑖 ∈ ω ↦ 1o))) |
| 6 | 5, 3 | eqtr3d 2231 | . 2 ⊢ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ 1o)) = 1o) |
| 7 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) |
| 8 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑄‘(𝐸‘𝑄)) = 1o) |
| 9 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ ω) | |
| 10 | 2, 7, 8, 9 | nninfsellemqall 15659 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = 1o) |
| 11 | 10 | ralrimiva 2570 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = 1o) |
| 12 | 1, 6, 11 | nninfall 15653 | 1 ⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∅c0 3450 ifcif 3561 ↦ cmpt 4094 suc csuc 4400 ωcom 4626 ‘cfv 5258 (class class class)co 5922 1oc1o 6467 2oc2o 6468 ↑𝑚 cmap 6707 ℕ∞xnninf 7185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1o 6474 df-2o 6475 df-map 6709 df-nninf 7186 |
| This theorem is referenced by: nninfomnilem 15662 |
| Copyright terms: Public domain | W3C validator |