![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfsel | GIF version |
Description: 𝐸 is a selection function for ℕ∞. Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.) |
Ref | Expression |
---|---|
nninfsel.e | ⊢ 𝐸 = (𝑞 ∈ (2𝑜 ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1𝑜, ∅))) = 1𝑜, 1𝑜, ∅))) |
nninfsel.q | ⊢ (𝜑 → 𝑄 ∈ (2𝑜 ↑𝑚 ℕ∞)) |
nninfsel.1 | ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1𝑜) |
Ref | Expression |
---|---|
nninfsel | ⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfsel.q | . 2 ⊢ (𝜑 → 𝑄 ∈ (2𝑜 ↑𝑚 ℕ∞)) | |
2 | nninfsel.e | . . . . 5 ⊢ 𝐸 = (𝑞 ∈ (2𝑜 ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1𝑜, ∅))) = 1𝑜, 1𝑜, ∅))) | |
3 | nninfsel.1 | . . . . 5 ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1𝑜) | |
4 | 2, 1, 3 | nninfsellemeqinf 11908 | . . . 4 ⊢ (𝜑 → (𝐸‘𝑄) = (𝑖 ∈ ω ↦ 1𝑜)) |
5 | 4 | fveq2d 5309 | . . 3 ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = (𝑄‘(𝑖 ∈ ω ↦ 1𝑜))) |
6 | 5, 3 | eqtr3d 2122 | . 2 ⊢ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ 1𝑜)) = 1𝑜) |
7 | 1 | adantr 270 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑄 ∈ (2𝑜 ↑𝑚 ℕ∞)) |
8 | 3 | adantr 270 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑄‘(𝐸‘𝑄)) = 1𝑜) |
9 | simpr 108 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ ω) | |
10 | 2, 7, 8, 9 | nninfsellemqall 11907 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1𝑜, ∅))) = 1𝑜) |
11 | 10 | ralrimiva 2446 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1𝑜, ∅))) = 1𝑜) |
12 | 1, 6, 11 | nninfall 11900 | 1 ⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1𝑜) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∈ wcel 1438 ∀wral 2359 ∅c0 3286 ifcif 3393 ↦ cmpt 3899 suc csuc 4192 ωcom 4405 ‘cfv 5015 (class class class)co 5652 1𝑜c1o 6174 2𝑜c2o 6175 ↑𝑚 cmap 6405 ℕ∞xnninf 6789 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-if 3394 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-id 4120 df-iord 4193 df-on 4195 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1o 6181 df-2o 6182 df-map 6407 df-nninf 6791 |
This theorem is referenced by: nninfomnilem 11910 |
Copyright terms: Public domain | W3C validator |