| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfsel | GIF version | ||
| Description: 𝐸 is a selection function for ℕ∞. Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninfsel.e | ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) |
| nninfsel.q | ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) |
| nninfsel.1 | ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) |
| Ref | Expression |
|---|---|
| nninfsel | ⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfsel.q | . 2 ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) | |
| 2 | nninfsel.e | . . . . 5 ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) | |
| 3 | nninfsel.1 | . . . . 5 ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) | |
| 4 | 2, 1, 3 | nninfsellemeqinf 15953 | . . . 4 ⊢ (𝜑 → (𝐸‘𝑄) = (𝑖 ∈ ω ↦ 1o)) |
| 5 | 4 | fveq2d 5580 | . . 3 ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = (𝑄‘(𝑖 ∈ ω ↦ 1o))) |
| 6 | 5, 3 | eqtr3d 2240 | . 2 ⊢ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ 1o)) = 1o) |
| 7 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) |
| 8 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑄‘(𝐸‘𝑄)) = 1o) |
| 9 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ ω) | |
| 10 | 2, 7, 8, 9 | nninfsellemqall 15952 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = 1o) |
| 11 | 10 | ralrimiva 2579 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = 1o) |
| 12 | 1, 6, 11 | nninfall 15946 | 1 ⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ∅c0 3460 ifcif 3571 ↦ cmpt 4105 suc csuc 4412 ωcom 4638 ‘cfv 5271 (class class class)co 5944 1oc1o 6495 2oc2o 6496 ↑𝑚 cmap 6735 ℕ∞xnninf 7221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1o 6502 df-2o 6503 df-map 6737 df-nninf 7222 |
| This theorem is referenced by: nninfomnilem 15955 |
| Copyright terms: Public domain | W3C validator |