ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnlt1 Unicode version

Theorem nnnlt1 8859
Description: A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
nnnlt1  |-  ( A  e.  NN  ->  -.  A  <  1 )

Proof of Theorem nnnlt1
StepHypRef Expression
1 nnge1 8856 . 2  |-  ( A  e.  NN  ->  1  <_  A )
2 1re 7877 . . 3  |-  1  e.  RR
3 nnre 8840 . . 3  |-  ( A  e.  NN  ->  A  e.  RR )
4 lenlt 7953 . . 3  |-  ( ( 1  e.  RR  /\  A  e.  RR )  ->  ( 1  <_  A  <->  -.  A  <  1 ) )
52, 3, 4sylancr 411 . 2  |-  ( A  e.  NN  ->  (
1  <_  A  <->  -.  A  <  1 ) )
61, 5mpbid 146 1  |-  ( A  e.  NN  ->  -.  A  <  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    e. wcel 2128   class class class wbr 3965   RRcr 7731   1c1 7733    < clt 7912    <_ cle 7913   NNcn 8833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-1re 7826  ax-addrcl 7829  ax-0lt1 7838  ax-0id 7840  ax-rnegex 7841  ax-pre-ltirr 7844  ax-pre-lttrn 7846  ax-pre-ltadd 7848
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-xp 4592  df-cnv 4594  df-iota 5135  df-fv 5178  df-ov 5827  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-inn 8834
This theorem is referenced by:  0nnn  8860  nnsub  8872  indstr  9504  indstr2  9520  sqrt2irr  12036
  Copyright terms: Public domain W3C validator