| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnnlt1 | GIF version | ||
| Description: A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| nnnlt1 | ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 < 1) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnge1 9013 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
| 2 | 1re 8025 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | nnre 8997 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 4 | lenlt 8102 | . . 3 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 ≤ 𝐴 ↔ ¬ 𝐴 < 1)) | |
| 5 | 2, 3, 4 | sylancr 414 | . 2 ⊢ (𝐴 ∈ ℕ → (1 ≤ 𝐴 ↔ ¬ 𝐴 < 1)) | 
| 6 | 1, 5 | mpbid 147 | 1 ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 < 1) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2167 class class class wbr 4033 ℝcr 7878 1c1 7880 < clt 8061 ≤ cle 8062 ℕcn 8990 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 | 
| This theorem is referenced by: 0nnn 9017 nnsub 9029 indstr 9667 indstr2 9683 sqrt2irr 12330 | 
| Copyright terms: Public domain | W3C validator |