| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnlt1 | GIF version | ||
| Description: A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnnlt1 | ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 < 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1 9041 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
| 2 | 1re 8053 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | nnre 9025 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 4 | lenlt 8130 | . . 3 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 ≤ 𝐴 ↔ ¬ 𝐴 < 1)) | |
| 5 | 2, 3, 4 | sylancr 414 | . 2 ⊢ (𝐴 ∈ ℕ → (1 ≤ 𝐴 ↔ ¬ 𝐴 < 1)) |
| 6 | 1, 5 | mpbid 147 | 1 ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 < 1) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2175 class class class wbr 4043 ℝcr 7906 1c1 7908 < clt 8089 ≤ cle 8090 ℕcn 9018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-xp 4679 df-cnv 4681 df-iota 5229 df-fv 5276 df-ov 5937 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-inn 9019 |
| This theorem is referenced by: 0nnn 9045 nnsub 9057 indstr 9696 indstr2 9712 sqrt2irr 12403 |
| Copyright terms: Public domain | W3C validator |